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MAGNETIC BREAKDOWN IN A FINITE ONE-DIMENSIONAL MODEL
by Gabriel Allen

Lewis Research Center

SUMMARY

Exact solutions have been obtained of the Schroedinger equation for a
model approximating an electron in a one-dimensional periodic potential acted
on by a transverse uniform magnetic field. In this model the periodic poten-
tial is approximated by a finite chain (20 atoms long) of "periodic" square
wells, and the parabolic potential due to the magnetic field is approximated
by a parabolic square-well potential. Procedures are presented for obtaining
solutions for arbitrary combinations of the well depth of the periodic poten-
tial Vg, the magnetic field strength H, and the ratio of well dimension (2w)
to the atomic dimension (a), 2w/a. Eigenvalues and wave functions have been
computed for the case 2w = a/2 for several values of Vo and H. The solu-
tions obtained are valid for arbitrary field strengths, but in order to detect
magnetic breakdown effects in such a short chain, very large values had to be
used. Although the values of H in the computations were of the order of
kilotesla (tens of megagauss), it has proved possible to associate these states
with their zero-field counterparts. The subroutines used in the computations
are also included.

INTRODUCTION

The study of the Fermi surface of metals became greatly accelerated
following the publication of the often quoted papers in references 1 and 2.
The profusion of theoretical and experimental papers on Ferml surfaces, which
began soon afterwards, continues to the present day. Consequently, there is
now available a veritable catalogue of quite detailed Fermi surfaces for a
number of metals (ref. 3).

The results of parallel theoretical calculations were, for the most part,
in such good agreement with the experimental results that various second-order
features of the structure (e.g., spin-orbit splitting) could be examined in a
meaningful way (refs. 4 to 6). One concept in which interest was revived is
magnetic breakdown (refs. 6 to 10), a phenomenon in which the connectivity of
a Fermi surface in a given direction may be changed in the presence of magnetic
fields.

In all of the treatments of the effects of magnetic fields on the electri-
cal properties of solids, computations can normally be carried out only for the



extreme cases of very small or very large magnebic fields. It was felt that it
might prove enlightening to examine an exact solution of even a simplified
model that embodied some of the important features of the interaction in solids
of electrons with external magnetic filelds.

In this connection, in work done at the Lewis Research Center, exact solu-
tions have been obtained for the case of an electron in a finite one-
dimensional chain of "periodic" rectangular well potentials acted on by a
uniform magnetic field in a direction perpendicular to that of the periodic po-
tential. The periodic potential consisted of wells of width 2w separated by
hills of width 2h = a - 2w, where a, the distance between atomic centers, is
the period. The solutions are valid for arbitrary values of a, w, and h.

Numerical values have been obtained for all of the bound-state eigenvalues
and some of the eigenfunctions for a = 3 angstroms. Since the number of in-
dividual computations was a monotonic increasing function of the length of the
chain, it was necessary to keep this length down to 20 atoms. The magnetic
fields were then chosen to be large encugh so as to make the effective magnetic
potential comparable to the,depth of the wells in the periodic potential. For
a chain of this length (60 A), the magnetic fields were, therefore, of the
order of kilotesla (tens of megagauss).

It may be noted that the behavior of an electron subjected to such high
fields in this model actually approximates that of electrons in real solids
subjected to reasonable fields of the order of a few tesla. JIFrom a dynamical
point of view, the field should be of such a size that the magnetic part of
the potential becomes an appreciable fraction of the total potential over some
part of the electron's path. In this model, the electron can travel a maximum
distance of 60 angstroms before being scattered; therefore, fields of the order
of kilotesla are required to build up the magnetic part of the potential in
such a small distance. In real solids, on the other hand, the mean free path
may be orders of magnitude greater than this, and much smaller magnetic fields
could then accomplish the same objective.

It has been proved possible, however, to associate each of these states
with its zero-field state. Thus, by following the wave function for the zero-
field state to its high-field state, something may be learned about the be~
havior of the system for moderate or intermediate fields.

The computations were performed on the IBM 7094 at the Lewis Research
Center, and the Fortran IV subroutines used are described and listed in the

appendixes.

SYMBOLS
-
A vector potential
a distance between atomic centers, period
Cy constant defined by eq. (49)



velocity of 1light

parametrized quantity used like energy, see eq. (21)

Fermi energy
zero-field energy gap in band structure
charge of electron

vl

12

magnetic field strength

magnetic field

nth degree Hermite polynomial of argument ¢
magnitude of z component of magnetic field
half width of hill

Dirac h, Planck's constant/2n

index specifying jth atom from center
components of wave vector

mass of electron

integer defined by eq. (19)

number of atoms in positive half of chain
integer defining the number of energy level, e,
momentum

cyclotron radius

determinants, see p. 38

one-dimensional potential

approximation to Vmag(x'): see eq. (17)

potential due to magnetic field, 1/2 muSx'®



VP(X))VP(X' )

€n

v

¥(F)

©c
Subsecripts:

e

mag

max

SB
WB
X,¥,2

a, P

defined by egs. (13) and (14), respectively
well depth of periodic potential

energy due to magnetic field defined by eq. (18)
half width of well

coordinates

X - Xo

defined by eq. (6)

defined by egs. (30) and (31)

energy

energy levels defined by eq. (9)

integer defined by eq. (19b)

wave function

cyclotron frequency

even solution

index specifying jth atom from center
approximate magnetic

magnetie

maximum

number of atomic distances from center of one end of chain
counting central well as O

periodic

strong breakdown
weak breakdown
coordinates

defined by egs. (C15) to (C18)



Superscripts:

h hill
W well
é sign of appropriate g

DERIVATION OF WAVE EQUATION
Free Electrons in Magnetic Field

The wave equation describing a free electron in a constant magnetic field
may be written as
l —>
—— +
Zm (‘P

where X is the vector potential, 3 is the momentum, and € 1is the energy.
The spin of the electron is neglected.

olo

K)2 V(@) = (@) (1)

-

—
If the magnetic field H is given by Hyzk, where Hy is constant and A
is chosen in the Tandau gauge (ref. 11),

A= H,(0,x,0) (2)

Then equation (1) may be written as

L e 2
o [PX (Py + Y HZX) + Pg:l‘y(x)y:z) = G‘Jf(X,Y;Z) (3)
The substitution

¥(x,y,2) = Aoty + 2i5,)] (2)
will result in the following simplification of equation (3):
2 32
=H2 doA 1 .22 _
2m g2 [Zm (ﬁky * HZX> ot kZ]% = €A (s)

Equation (5) is the equation of a harmonic oscillator centered about

- % (6)

el

X0

with frequency



Thus, if x' = x - x0, equation (5) may be written in the more familiar form

2 .2 HOKE
2 @8N 1 2 .2 Z -
S Tz T § X 7\+<2m - )7\—0 (8)

From this form, it 1s known that

or (using eq. (7))

1

'2') (9)
Thus, the allowed energy levels of a free electron in a constant magnetic

field are given by equation (9). -

The term A,(x) will be a harmonic oscillator function in (eH,/ct)(x-xq).
Thus,

Y ko ky = <—31><p[i(:>fl<y + Zkz)]Hnl: :—EE (x - Xo)]exp[-iiz (x - Xo)z] (10)

where Hn(g) signifies the nth degree Hermite polynomial of the argument §.
A further discussion may be found in reference 12.
Electron in One-Dimensiocnal Periodic Potential
and Constant Magnetic Field

- If an electron is acted on simultaneously by a constant maghetic field
H = H)k and a one-dimensional potential in the x-direction, then equation (1)

must be replaced by

1 - e — 2 -~ —
(7 +23) + v]¥E) = a@ (12)
When the previous substitutions are used in equation (ll), it may be reduced to
NN 1 ell, e 1 .29
—_— | = + — — =
2m  gx2 2m Jﬁky c X + Sm kg + V(X) A €N (12)

The following assumptions should now be made:

(1) The term V(x) is a periodic potential Vp(x) of period a such that



Vp(x) = 0 w<x W
F (13a)
= Vo wgx<a-Ww
and.
Vp(x + na) = Vp(x) (13b)

where n 1is any integer. Here w will be referred to as the well region.

(2) The term xg 1is a whole number of atomic distances. Assumption (2)
will have the effect of making Vp(x') periodic with the same period a as
Vp(x) since the center of a well region in x will coincide with the center of
a well region in x' (equal to x - x0) so that

Vp(x') =0 W< x' LW (142)
= Vg wx'<a ~w
and
Vp(x' + na) = Vp(x') (14b)
Then, the equivalent of equation (8) can be written as
2, 2
%3 3}2{—7!\2 + %mﬁx*zx + (hz—:lz - e)?\ + Vp(x')A = O (15)

The quantity 1/2 mmgx'z, which will be called Vg (x'), may be considered to
be a potential due to the magnetic field. Then equation (15) can be written as

&, zm e_hzkg-[v (x')+v(x')]x—o (18)
Vmag(x') + Vp(x)

The form of the potential Vyag(x')
+ Vp(x') is shown in figure 1.

In each interval, the potential is
like a harmonic oscillator in that it is
y parabolic in x'. The general solution
OV ) to such a potential problem is a sum of
two Weber functions (ref. 13}, each of
which has special behavior at the origin
and at infinity. In an actual harmonic
oscillator, only one of these functions
serves as a wave function because of the
requirement that wave functions be well
Figure L - Form of potential due to constant magnetic field and behaved at infinity. Since each interval
periodic square well, w = ald. in the present problem is finite,

-

i ] ] ;
z zo® =
© ©
-

1
I
T
=
1 ! +
©



however, neilther of the Weber functions can be eliminated as an allowable solu-
tion, and the usual linear combination of two independent solutions of the
second~-order differential equation must be used for the wave function.

The form of the wave function is invariant throughout the entire range of
x', the wave function for a given interval being distinguished entirely by the
coefficilents appropriate to that interval.

It may be noted that the symmetry which seems to be physically apparent
in this problem in the form of the potential is somewhat obscured by the mathe-
matical form of the wave function. The Weber functions for -x are different
from those for +x, and this fact must be taken into account when matching at

x!' = O.

There is, in general, no actual physical symmetry here. The term vp(x!')
is symmetric about x = O, whereas Vmag(x') is symmetric about x = x0 =
-chky/eHZ. The special assumption has been made that xp is an integral
number of atomic distances. As was already said, in such a case the entire
potential Vygo(x') + Vp(x*') is symmetric in x'. Clearly this assumption will
only be satisfied for special combinations of ky and H;.

However, the noncoincidence of the vertex of the parabola Vpg (x*) from
the center of the well in Vp(x') (see fig. 1) should not seriously affect the
physical results as long as the resulting total potential does not differ
greatly from the Vpag(x') + Vp(x'), which is the ordinate of figure 1. The
depth of a well in the periodic part of the potential should be of the order of
a few electron volts. The part of the potential due to the magnetic field

turns out to be expressible as

ev
©
A)E

1) ~ -10 g2 - 2
Vmag(x) 8.8X10 HZ(X xo)

where Hy; 1s in tesla, and x - x0 is in angstroms.

The one-dimensional chain in the model is about 20 atoms long; therefore,
magnetic fields large enough so that Vﬁag(x') contributes a few electron volts
before the chain ends should be used. Since there are 10 atoms on each side of
the center, thils means Vmag(x'),% 8x10~9 H% electron volt at the ends of the
chain so that Hy =~ 1 kilotesla or 10 megagauss in order that Vmag(x') con-
tribute 1 electron volt to the total potential. Because the potential varies
as (x7)%, Vpag(x') will be much smaller than 1 electron volt over most of the
chain so that a deviation from symmetry should have a relatively small effect

on the results.

Approximation of Magnetic Potential by
Parabolic Square-Well Potential

Furthermore, a potential approximating Vmag(x') should also not affect
the results too drastically if it has the form



Vy(x') = wl,Vg (17a)

Vy(x' + na) = Vy(x') + (02 - v2)V, (17b)
where
2
H 1 eHZ 2
Vi == |—2] a 18
© 2m ( c ) ( )

H is in tesla, n is any integer, and my: is an integer depending on x' so
that

myt = 0O OK<x*La ~-w (19a)
M1 =V va -w<x < (v+1l)a-w v any integer (19v)

The potential defined by equations (19) will be called a parabolic square-
well potential.

Define

v(xe) = 22 [oGer) + vp(act )] (20)

21,2
Kok
2m 2
E‘h_z( - 2m> (21)

where Vy(x') is given by equations {(17a) and (17b) and Vp(x') is still given
by equations (14).

The fact that the total potential is not periodic means that the wave
function and its derivative must be matched at each boundary between regions of
constant potential. This means that the rank of the determinant used for the

determinantal compatibility
Ve + Vplx) .i condition is at least twice
%_ﬂ as large as the number of
rw regions of constant poten-
tial in the positive half of
Vo + Ny  the system (taking advan-
/ tage of symmetry). Thus, in
Vo VYo order to keep the determi-
! ! nant down to a manageable
size, the system must be
kept finite. This is

J DL 1 T . .
= £ '3 £ 3 3 goz 2| Nay i readily accomplished by add-
[} + 1 NRYS . . .
. = 5 8 = = © VG s ing the cutoff condition

(N+Da-wd

-[IN+Da

o . V(N + 1)a - w] = w (22)
Figure 2. - Form of potential given by equations (20) and (22),



where N 1s the number of atoms in the positive half of the chain.

The form of V(x') can be seen by examining Vy(x') + Vp(x') which is
shown in figure 2 (compare with fig. 1). The substitution of Vym(x') for
Vmag(x’) has the advantage that the solutions in each hill or well region are
now combinations of trigonometric or hyperbolic functions rather than Weber
functions. The effect of Vm(x') is a kind of averaging of Vmpag(x') in any
region considered. The averaging could be improved by using (m§,+-mx, + l/S)Vé
instead of m%xVé. When considering the nature of the approximations already
inherent in the model, however, the indicated improvement would be second order

at best.

Another factor that must be considered is the effect of the cutoff as
given by the boundary condition in equation (22). It is clear from figures 1
and 2 th§t the effect of the cutoff will be small for states lying well below
Vo + NZVo, since the wave functions would have small amplitudes when
x' < (N + l)Za - w even if there were no cutoff. The energies for a few of
the states investigated were not really low enough to avold a forcing of the
wave function to zero in the vicinity of x!' = (N + l)2a - Ww. Most of the
states examined are not greatly affected by the condition in equation (22),

however.

SOIUTION OF WAVE EQUATION
Derivation of Wave Function

When the quantities defined by equations (20) and (21) are used, the wave
equation for A(x') becomes

ji?z + [E - v(x')]A =0 (23)

The solution of equation (23) is readily obtained. Denote the region from

-a to a as the oth region. This 1s the region for which VM(x') = 0.
Furthermore, denote the interval by a subscript (starting with 0) and indicate
by an h or w superscript whether the periodic part of the potential is
"on" (hill) or "off" (well). Then in the Oth well,

%g(x') = Cg sin Ygx' + Dg cos Ygx' -w<x'<w (24)
and in the ObR nii1,

k%(x’) = C% sin T%x' + D% cos Y%x' w<x'<a ~Ww (25)

where the C's and D's are constants and

10



o 2 \1/2
Vo= Y =l (26)
5= VE= W2 Zm
5 2 1/2 '
h 2m 1%y
oYz \¢ " m@m Vo (27)

An analogous expression exists for the wave function in the oth hill for
negative x'; that is, -(a - w) < x' < - w.

In the nth interval,

M(x"') = C} sin ypx' + Dfi cos ypx' na -~ w< x'<na-+w (28)
Kg(x’) = Cﬁ sin Ygx' + D% cos Y%X' na +w<x'<(n+1l)a -w (29)

where

1l/2
Ty = 1%%(e —;f%]:li-nZVé> / (30)
and
- 232 1/2

vB = h_gl (e - ’lez - n2v) - VO> (31)

Equations (28) and (29) are of the proper form only for real positive
Yn's. The other possibilities will be shown subsequently.

Both even and odd solutions exist, in general. The even solutions will be
discussed in detail and necessary modifications in procedure for odd solutions
will be indicated where relevant.

The form of the solution in the OB well becomes (subscript e denotes an
even solution)

Ag’e(x') = Dg,e cos ¥§ ox' wEx'<w (32)

The solutlons in the other intervals maintain the same forms as given by
equations (30) and (31), but pains must be taken to use the even coefficients
and eigenvalues. Thus,

W 1) = . W t 4 W 1 - '
%n,e(x ) Cg,e sin Y§ X Dg,e cos Y¥ X na - w<x'<mna+w (33)



Ag,e(x’) = Cg’e sin T%’ex’ D% e COS Yg,ex'
na+w<x'<(n+1l)a - w (34)
where
Yg,e = VEn,e (352)
h = 4f/E _ By (35Db)
Tn,e = n,e B2 0
and
E, _=E 2 20 y! (36)
n,e -~ Ye " 1 72 O

The term E, 1s an elgenvalue of equation (23) belonging to an even eigen-
function.

It will be convenient to write the wave function in each interval in such
a form that it is centered about one of the boundaries of the given interval.
Dropping the e subscript for simplicity results in

%g(x') = Bg cos ng' -wEx'<w (37)
%X(x') = AX sin YX[X' - (na - w)] + BY cos YX[%' - (na - w)]
na - w<x'<na+w (38)
?\g(x’) = Aﬁ sin YE[X' - (na + w):l + BE cos Yg[x' - (na + w)]
na +w<x'<(n+1l)a - w (39)
and
%%(x') = Aﬁ sin TE{%' - [(N + 1l)a - w]} (40)

where the coefficients are all linear combinations of the C's and D's in
equations (33) and (34), Bg = Dg e» the T's are given by equations (35), and
N is the number of atomic distahces from the center to one end of the chain
counting the central well as 0. It should be noted that %8 is centered about
x' = 0; the arguments of KK and K% are zero at the left boundary of the
appropriate interval, and the argument of Ay 1is zero at the boundary at which
the potential becomes infinite and the wave function vanishes (which is the

1z




right boundary of the last interval).

As has been stated previously, solutions of the form shown are for real
nonzero Y's. If, for some eigenvalue €, ¥ in some interval (say the jOB)
is zero, then in that interval

Aylx') = Aj[x'- (Ja = W)] + By (41)

where the + or - occurs according to whether the interval in question is a
hill or well region, respectively.

Finglly, if v 1s imaginary in some interval, the trigonometric functions
become the corresponding hyperbolic ones and ﬁﬁ; general form remains un-
changed. Quantities g and G are defined as follows:

g =7 (42)

G

k4 (43)

The form of the solution in a given interval will then be determined by the
sign of g in the interval. (Note that g is always greater than O.) Use
willl be made of the well-known properties sin ia = i sinh a and sinh ioc =

i sin a in the expressions that are used for A(x'). Also, at this point the
coefficients A will be redefined in such a way that the transition between
positive and negative g values will be smooth. A summary of the different
forms of A(x') in various regions is

N(x') = BY cos G¥x! (44)
where -w < x' < w,
(oW
n_. \4 - - W W _ _ W
i 51nh[én x' (na w)] + B] cosh Gn[x' (na w)] g, <O
n
W) = { Al - (na - )] B & =0
W
g% sin Gg[x' - (na - w)] + BY cos Gg[x' - (na - wi] gn > O
-
(45)

where mna - w < x' < na + w,

13



h
é%-sinh Gg[%’ - (na + W)] + Bﬁ cosh Gﬁ[%’ - (na + W)] gg <0

Gn

?\%(X')=JA%[X' - (na+w)]+B% g?l=0
h
A_i sin Ghn[x' - (na + w):| + BI]% cos G%[X' - (na + w)] g% >0
L
(46)

N

where na + w< x' < (n+ 1l)a - w, and

b

%ﬂ-simeﬁx'-[(m+l)a-w:| gl <o
7\1]{Il(x')={A§x'-[(N+1)a-w] gt = 0

ah

a%-sin G%{%' - [(N + 1)a - w] gﬁ >0 (47)

\_

where Na + w < x' < (N + 1)a - w.

Eigenvalues. - The determinantal compatibility condition from which the
eigenvalues may be determined can be obtained by matching the wave function and
its first derivative at each of the boundaries. The details are given in
appendix A. The determinant is large and unwieldy, but fortunately a system-

atic procedure for evaluating it in general

osl— Breakdown could be formulated. A subroutine was devised
. boundary from which the results could be obtained on the
——--—— Blount IBM 7094. Figures 3(a) to (e) show the eigen-

——-—— Strong

values for a chain of 10 atoms on each side of
the Obh well plotted as a ﬂunction of magnetic
field strength (by using Vy). Each figure rep-
resents a fixed periodic well depth (V). Note
that the eigenvalues are actually € - hzké/Zm
rather than € (see egs. (30) and (31)).

.061—

.02}— . . o
Wave functions. - The matching conditions

that are used collectively to obtain the eigen-
values can now be used individually in succes-
sion to find the ratios of the coefficients in
each interval to some given coefficient that

(a) Even eigenvalues; Vg, 1electron volt. will remain arbitrary except for normalization.
Figure 3. - Eigenvalues as function of V. The coefficient of the OtR well BY has been

14




Breakdown
boundary
——=~-——Blount
20— -—— Strong
16—
V12—
3
-0
>
08—
04—
0

(b) Even eigenvalues; Vg, 3 electron volts.

Figure 3. - Continued. Eigenvalues as function of V{.

chosen as the arbitrary coefficient, and all of the other coefficients have
been obtained in terms of it. The details are shown in appendix B.

In order to compare the behavior of different states, it is convenient to
use normalized wave functions. The normalization is shown in appendix C.

MAGNETIC BREAKDCOWN IN MODEL

In order to see what magnetic breakdown means as applied to this model,
the behavior of the system may be examined as the magnetic field increases, and
an attempt to account for the changes in a reasonable way may be made. There
are a few guidelines that may be laid out in advance without (it is hoped)
prejudicing the interpretation.

When there is no magnetic field, the system may be described as an elec-
tron interacting with a periodic square-well potential in a box. There is a
basic obJjection to the use of ordinary perturbation theory in estimating the
effect of magnetic flelds on the properties of laboratory sized samples
(ref. 14). In fact, it is the periodic part of the potential that is commonly
treated as a perturbation to describe the behavior of systems under the influ-
ence of both a periodic potential and magnetic fields (refs. 7 to 10). Never-
theless, the behavior of the system will change in a continuous manner as the
magnetic field enters the picture. ©Speaking qualitatively, very small fields
should have a relatively insignificant effect, and, as the fields increase,
their effect should become more easily perceptible. Therefore, some measure
may be sought that might be expected to indicate when the size of the field is
such as to have readily discernible effects on the behavior of the system.

15



Breakdown
boundary

L32— ——--—— Blount
——-—— Strong

28—

. 20—
3
N
>
12—
. 08—
04—

{c) Even eigenvalues; Vg, 5 electron volts,

Figure 3. - Continued. Eigenvalues as function of V.

Perhaps the simplest and most naive measure that comes to mind is a com-
parison of the magnitude of the magnetic potential with Vg, the depth of the
well in the periodic potential. When equations (17) are used, this condition

may be written as
u(xt) = Vo (48)

The conditions described by equation (48), in which somewhere in the chain
Vy{x') becomes as large as Vg, will be referred to as weak breakdown (WB).

More explicitly, define

2
- L(e) - -10 ev
Cyq = Zm(c) = 8.793984X10 V2 (too1a)? (49)

and define nyp to be the value of v in equation (19) at weak breakdown.
Then VO is expressible as

' 2
Vo = CyafH? = z Ca (50)

16



Breakdown
| boundary
———— Blount
o T Strong
S
A—
]
2
-
0 5 10 15 65
(d) Even eigenvalues; Vg, 10 electron volts.
1 Solution
—— Even
N i Odd
D Indicates
even and
= odd elgen-
: values too
close to
be distin-
A guishable
3
2
A
L 1
0 2 4

{e) Blowup of lower energy portion; Vg, 10 electron volts,

Figure 3. - Concluded. Eigenvalues as function of V(.

and VM at weak breakdown is

17



Furthermore,

v
0
n = (52
WB CrH2a2 )
7
0
Hyp = a-z-——ﬁha (53)
plnyga)

There is a second type of breakdown that may be called strong breakdown.
In this situation, the change in Vy over a distance a equals Vo, so that
the magnetic potential "washes out" the periodic potential. Thus,
Ax") B

Ax! - VO (54:)

a

so that letting the subscript ©SB denote strong breakdown enables Vy to be
expressed as

(V) = Cb(ngpe)” (55)

Vo

=9 (56)
2CyHCa?

nsB

and

. 7
0
Hgp = (57)

ZCHnSBaz

Recently, a quite different criterion for breakdown has proved useful in
explaining certain experimental results (refs. 7 to lO). This condition is
sometimes called Blount breakdown and for an infinite crystal is commonly ex~
pressed in the form

B
~ 1 (58
iﬁ‘”cEF )

where & is the zero-field energy gap in the band structure and Ep 1is the
Fermi energy.

In this model, if it is assumed that an eigenvalue E plays the role of
Ep, Blount's criterion becomes

2
H= 8><lO3 §5 tesla
= (59)

KES



or in terms of Vé,

0.5 X EX
Vg~ ——8 ev (80)
2
E

It may be seen from figure 3 that actual gaps at zero field can be found,
and these gaps may be used directly for Eg instead of resorting to first-
order perturbation theory as is more commonly done (ref. 10).

RESULTS AND DISCUSSION
Description of Specific Model

First, numerical values for the specific model used in the computations
will be given. A value of 3 angstroms for a has been chosen as representa-
tive of a large number of actual solids. It should be emphasized that the re-
sults in the preceding section are valid for all values of a, w, h, and Hy.
In this report, the computations have, nevertheless, been limited to the case

[}
2w = 2h = a/2 = 1.50 A (61)
With this value of a, equation (18) is expressible as

ev

1
Vo = 7.9x1079 g2 ¥
° % (tesla)?

Next the length of the chain was fixed by the time required for the sub-
routines to go through a set of eigenvalues for fixed Vo and Vo It turned
out that a chain 10 atoms on each side of the O™ well had a determinant of
such a size that a set (with fixed Vo and VO) could run in the maximum
allowed time of 5 minutes. Thus, N was set equal to 10 in the computations.

Eigenvalues

The actual Fortran IV subroutines used in the computations are described
in appendix D. The eigenvalues for various well depths are shown as a function
of magnetic field strength (or VO) in flgure 3. For each VO, computations
have been carried out for a few values of Vo and these points comnected by
straight lines. (This procedure accounts for the kinks in the figures.) Fig-
ures 3(a) to 3(d), however, show only even eigenvalues, while eigenvalues ob-
tained from odd and from even solutions are shown in figure 3(e). These eigen-
values are distinguished on the figures (where possible) by broken and solid
lines, respectively. It may be noted that the chain in the model was long
enough for the system to show a clear-cut band structure at zero field. As can
be seen, the magnetic field shifts these zero-field levels by unequal amounts.
Thus, the energy gaps in the band structure Eg (which are zero~field concepts
in ordinary band-structure language) would be difficult to discern at large

fields were it not for the fact that they were connected to the zero-field
positions.
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Some of the even and odd levels for higher fields are almost degenerate.
These situations are denoted by a D at the energy in question. The actual
computations that were performed using double-precision arithmetic show that in
every case there was a nonzero separation between even and odd evergy levels.
The pattern was always such that for a given Vp and Vé the lowest state is
even, and then alternate odd and even states follow as far out as the computa-
tions were carried. This is certainly to be expected and was only used as a
rough check to see if any states were skipped in the eigenvalue search routine.

Certain features to be expected if an actual band structure were observed
were common to the eigenvalues of the system independent of the well depth and
are shown for Vg = 10 in figure 3(e). First of all, there were always 21
eigenstates in the first band. The lowest eigenstate was always even, and the
eigenstate at the top of the first band was also even. The lowest state in the

second band was therefore odd.

Since it was intended to examine the three types of breakdown described
in the preceding sectlon, it was necessary to examine states in potentials for
which strong breakdown had occurred. As a margin of safety for each value of
Vo, computations were made up to eigenvalues SO-percent larger than the value

of the pertinent (VM)SB.

In this connection, it may be mentioned that, in order for the effects of
strong breakdown to be manifest, the energy of the state being examined should
be high enocugh so that the wave function has an appreciable amplitude in the
region where the slope of VM(X‘) is changing rapidly enough to wash out the
effect of Vp(x') (see eq. (54)). Thus, strong breakdown will be said to occur
in this model whenever the system 1s in an eigenstate such that & 2,(VM)SB.

When equations (50) and (55) are used, the equation of the strong breakdown
boundary is

<
[@]aV]

E = (62)

=

!
o)
Both strong and Blount breakdown lines are indicated in the figures. The

Blount boundary was plotted by using the actual gaps taken from the figures for
Eg 1in equation (60).

Figure 4 shows the shifting of the eigenvalues by increasing the well
depth at a constant magnetic field. It may be noted that, for small well
depths, the separation between successive eigenvalues does tend, as Vg goes
to zero, to approach the constant value %Hwe (equal to 0.322 ev for the field
chosen) as given by equations (7) and (9). It should be mentioned that the
states on the E-axis which represent zero well depth are the actual values for
a free electron in a magnetic fileld computed from equation (9). If the eigen-
values for Vg = O in figure 2 are computed, the lower states (E = 7 ev) are
rather close to those on the E-axis in figure 4, but the separation for the
higher states becomes rather large (approximately 0.7 ev between the last two

eigenvalues shown).
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Solution

Even
————0dd

Breakdown
boundary

—--—— Blount
—-— Strong

D Indicates even and
odd eigenvalues
too close to be

distinguishable

Flgure 4. - Effect of well-depth at constant magnetic field of 2. 8 kilotesla (28 megagauss). Values at
V(= O are eigenvalues for free electron in magnetic field obtained from equation (10).

For the lower eigenstates, there seems to be a slight decrease in separa-
tion as VO increases. For the higher lying states in the first band, how-
ever, the eigenvalues seem to cluster in degenerate odd-even pairs separated
by about 1 electron volt. A comparison with figure 3 shows that the degener-
acy is lifted after crossing the gap between the first and second bands.

As the well depth increases, it is tempting to search for any tendency for
the states to spread into a band (line broadening) as described in reference
ence 10. However, this broadening arose from the degeneracy in the position
of xp of each state at fixed Vé. By contrast, the computations in the
present model were made at a fixed x(p, so that there is no reason for the
effect to show up in the model.

Wave Functions

The actual subroutines used in these computations are described in appen-
dix E. In order to learn more about individual states, it is helpful to look
at the wave functions. Wave functions have been computed and plotted for a
large number of eigenvalues and some of the characteristics that were found are
shown here. Advantage has been taken of symmetry so that the plots show only
the positive half of the chain.
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Most of the wave functions shown are for a rather deep well (VO = 10 ev).
Some wave functlons for shallower wells have been computed and do not seem to
differ qualitatively from these. Therefore, the discussion will be limited to
this well depth unless the contrary is specified.

The preceding discussion of the eigenvalues shown in figure 3 contended
that the lines connecting the eigenst§tes could be interpreted as!showing the
change in the zero-field states as Vg increased. At a given Vg, the wave
function for the lowest eigenvalue found (which is always even) has no nodes
over the entire 20-atom chain; the wave function for the next one (which is
0dd) has one node at x' = 0, and the wave function for each successive eigen-
value has one more node than its predecessor. The wave function corresponding
to the ith eigenvalue thus has 1 - 1 nodes for any Vé. This fact makes it
possible to follow the change in behavior of the ith state of the system in
configuration space as Vé varies and permits a connection to be made between
high-field and zero-field states. Of course, this test is not a sufficient
one, since zero-field states could cross one another as the magnetic field in-
creases. Thus, some additional factors will be considered in examining the
behavior of the wave function to support the identification with indicated
zero-field states in figures 3 and 4.

In the discussion which follows, it should be noted that the number of
nodes in the wave function for the 20-atom chain for even and odd solutions is,
respectively, twice the number to the right of x* = 0 and twice the number

plus 1.

Another point requires some clarification. For a gilven eigenstate, Aﬁ is
determined by matching the wave function at the boundary between the last well
and the last hill (where x' = 10a + w). DNaturally, the vanishing of the de-
terminant in appendix A is Jjust the condition required to ensure that A%

would be exactly the same for this eigenstate if it had been computed by match-
ing the AdMx')/dx' rather than A(x') itself at this boundary. If the deter-
minant for a given eigenstate is sufficiently close to zero, then d%(x')/dx'
is smooth everywhere. If it is not sufficiently close to zero, A(x') is smooth
but AaA(x')/ax' is discontinuous at x' = 10a + w and the amplitude of A(x')
1s inordinately large in this region.

It turned out that it was not possible to match the boundary conditions
with needed accuracy for all the eigenvalues. For this reason, a somewhat
incomplete set of wave functions 1is, presented, in the sense that the same state
can not always be followed for different magnetic fields. The figures show
wave functions for states satisfying conditions as closely as were available
under the circumstances.

In this connection, it should be mentioned that the odd wave functions
were most frequently inaccurate, and therefore, all of the figures show only
even states except where otherwise indicated. As mentioned in the preceding
section, the bottom of the second band is always an odd state. It 1s necessary
to keep in mind that The lowest even state in the second band that is shown in
several of the figures is actually the second state in the second band.
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Figure 5. - Wave functions for eigenstates at a magnetic fleld strength of 3. 1 kilotes|a; Vg, 0.0765
electron volt.

The general features of the wave functions for the system will be examined
in some detail. TFigure 5 is typical and represents the system in a field of
3.1 kilotesla (31 megagauss, Vé = 0.0765 ev). The lowest state in the figure
is for E = 10.75 electron volts. This state is in the first band and has
18 nodes. The amplitude of thils state has a definite maximum at about 27 ang-
stroms and is very small for x' < 22 angstroms.

The next state shown is at the top of the first band (E = 12.34 ev). The
general appearance of this wave function is quite similar to that of the pre-
ceding state shown except that the maximum is even more pronounced and is
shifted slightly to x' = 30 angstroms.

The state following this one, although rather close to it in energy
(E = 12.89 ev), demonstrates a sharply different character. For this state the
amplitude is suddenly quite large in the vicinity of x' = O (although the
maximums are not as pronounced as for the two preceding states) and is very
small for x' > 17 angstroms.

The last state shown in figure 5 is for E = 15.29 electron volts and is
in the middle of the second band. It shares with the preceding state a low
amplitude near the end of the chain and a comparatively large one near the
center.
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Some semiquantitative statements may be made about this behavior instead
of a full guantitative explanation. First of all, an explanation may be sought
from the viewpoint that, in the first band, the system is largely controlled
by the magnetic field with even the relatively deep (10 ev) "periodic" well
having no more than a modulating effect on the basic free electron in a mag-
netic field behavior. In this framework, it is proper to consider the cyclo-
tron radius hk/mmc as the primary parameter governing the motion of the elec-
tron. For a field of 3.1 kilotesla (31 megagauss), this quantity is

T~ 6.35 /0 + 1/2 A (63)
where n 1s the number of the state in equation (9).

The state E = 10.75 electron volts is the 19th state, and so r should
be about 27.3 angstroms, which is quite close to the peak of 27 angstroms for
this state. The state at the top of the first band is the 23rd state, and,
for it, r will be about 30.8 angstroms, which is still not far from the sharp

peak at 30 angstroms.

The next state, being at (or near) the bottom of the second band, may be
expected to behave quite differently since it is on the other side of what
would be the Brillouin zone for a truly periodic potential (see fig. 3(e)). It
might be expected to behave more like a state near the bottom of the first
band, so since it 1s the second state (the lowest state in the second band is
0odd), n may be set equal to 2 in obtaining an estimate of r. The resulting
value of about 10 angstroms is not far from the actual region of large ampli-
tude for this state. The final state in the middle of the second band behaves
like a state that is less bound by the magnetic field than the others, and con-
sidering the fact that its energy is comparatively high, this is not sur-
prising.

Another way of looking at the problem is to consider the motion in the
ky - ky plane. States well below the top of the first band have orbits in
k-space that do not come too close to the Brillouin zone. The state at the
top of the first band has an orbit in k-space much of which is near the
Brillouin zone boundary. On the other hand, the states near the bottom of the
second zone have orbits in the second Brillouin zone and, in the reduced zone
scheme, these are again not very close to the zone boundary.

The same general type of behavior is shown in figure 6 for states at
H 6.2 kilotesla (62 megagauss). It is noted that r = 21.8 angstroms for
n = 23 at this field and again this is very close to the position of the sharp
maximum for the top of the band. The simple picture fails for the state in
the middle of the band though, since no very clear maximum is present, and
secondly, r would be about 19 angstroms, which is a rather low amplitude point
here. Nevertheless, the overall behavior is gquite similar to that shown in

figure 5.

Some additional weight to this interpretation is furnished by figures 7
to 9. Figures 7 and 8 show some odd wave functions that adequately satisfy the
matching requirements. Figure 7 shows the states at H = 3.1 kilotesla
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Figure 6. - Wave functions for elgenstates at a magnetic field strength of 6. 2 kilotes/a; Vg, 0.3061
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Figure 7. - Odd wave functions In first band; magnetic fleld strength, 3.1kilotesla,
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Flgure 8, - Odd wave function in first band; magnetic field strength, 4.4 kllotesla,

Location

Middle of first band

Top of first band

Lowest (even) state
in second band

et

Ax')

X T T T I o o
SN R YN R Y
N N A B B < S A S =

lO

X', A

Figure 9, - Even wave functions for wel! depth of 5 electron volts; magnetic field strength,
5.9 kilotesla.

(31 megagauss, compare with fig. 5). The wave functions would fit in properly
with those shown in figure 5, and r would be 24 angstroms for the state in
the middle of the band (not very good agreement) and 30 angstroms for the state
near the top of the band (quite good agreement) .

Figure 8 shows an odd wave function in the middle of the first band for a
field of 4.4 kilotesla (44 megagauss). The peak is at 21 angstroms, which is
in very good agreement with zxr for this field strength.

Some wave functions for a smeller well depth (Vp = 5 ev) are shown in fig-

ure 9. Again the same general features as 1in figures 5 and 6 are exhibited.

Thus, 1t would appear that the general behavior of the system described
for figure 5 occurs under a variety of conditions. The picture used as a de-
scription is too simple to be expected to apply uniformly to a more complete
examination of wave functions for all combinations of well depth and magnetic
field strength. DNevertheless, it appears to be somewhat useful in a limited
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(d) States past Blount breakdown; V{, 0.306 electron volt; magnetic field strength, 6.2kllotesla,

Figure 10, - Blount breakdown in model; Vg, 5 electron volts. Dash-dot fine, middle of first

band; solid fine, top of first band; dotted line, bottom of second band.
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gualitative description.

Blount breakdown, which was discussed in the section MAGNETIC BREAKDOWN IN
MODEL: can also be examined for its usefulness in predicting sharp changes of
behavior in the model. Figure 3 contains curves that show at which energies
Blount breakdown is to be expected on the basis of equation (59) or (80). In
examining Blount breakdown, changes must not really be sought in the behavior
of states that are rather close to one another. Blount's criterion, as given
by equation (60), actually states the breakdown occurs when E is "near"
(2Vé)172/E2; therefore, states near this quantity must be compared with others
rather well separated from them.

In order to test Blount breakdown in the model, a set of "Dy tested"
elgenvalues (see appendix A) for a fixed value of H is required over a rather
wide energy range. The results of the computations were such that such sets
were available only for the well depth Vg = 5 electron volts. Thus, fig-
ure 3(c) should be referred to in order to see where the states lie relative to

the Blount line.

It can be seen from figure 3(d) that all the states shown in figures 5
to 9 are well below Blount breakdown. These figures, therefore, can furnish no
information as to the validity of the Blount criterion for the model.

Figure 10 shows wave functiocns for a well depth of 5 electron volts for
states rather well before, near, and after Blount breakdown. Figure 10(a)
shows states for Vg = 5 electron volts at H = 3.8 kilotesla (VO = 0.1148 ev).
These states share a feature with those states in figures 5 to 9 of all being
below Blount breakdown (see fig. 3(c)). As in the aforementioned figures, the
states flanking the energy gap demonstrate distinctly different behaviors. (It
should be noted, however, that the roles of the states have been reversed in
comparison with the earlier figures. The significance of this reversal is not
clear at present). Next, states at H = 4.9 kilotesla (Vé = 0.191 ev) are
shown in figure 10(b). From figure 3(c) it may be noted that the states flank-
ing the gap, while still below Blount breakdown, are closer to it than the
states in figure 10(a). The main feature of interest in this figure is that
the difference between the flanking states is smaller than in figure 10(a).

The amplitude of the state at the bottom of the second band is greater here and
for A' = 1.5 angstroms is quite comparable to that of the state at the top of
the first band. The latter state, in turn, has a greater amplitude near the
end of the chain than the state in figure 10(a). The transition is completed
at H = 5.8 kilotesla (Vé = 0.268 ev). As seen in figure 3(0), the Blount line
passes through the gap at this field, so both flanking states are actually near
Blount breakdown. These states are shown in figure 10(c). It may be noted
there that the differences between the flanking states are greatly diminished
in comparison with cases shown below the Blount line. Incidentally, the ampli-
tudes of the flanking states are now in the same relative position as those at
Vo = 10 electron volts, which were all below Blount breakdown. Finally, fig-
ure 10(d) shows states past Blount breakdown.

Thus, it would appear that the periodic part of the potential exerts a
strong influence on the system for states well below Blount breakdown, the
states corresponding to the ones flanking the first gap in the zero-field band
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structure consistently exhibiting significantly different behavior. On the
other hand, as Blount's criterion begins to be satisfied, the periocdic poten-
tial has a much weaker effect, and the changes between states flanking the
energy gap become far less pronounced.

The remaining type of breakdown, strong breakdown, has not been investi-
gated in detail for reasons that would seem to be obvious. The strong break-
down line in figure 3, for the most part, involves states that lie so far above
the bottom of the second band that they would lie in the continuum were it not
for the box property of the chain. A few wave functions in this region were
computed and showed only the typical behavior characteristic of "free particles
in a box." These wave functions, therefore, would not appear to contribute
markedly to an understanding of breakdown in the model.

SUMMARY OF RESULTS

A one-dimensional model has been examined in an attempt to follow magnetic
breakdovwn in some detail. The model is that of an electron in a uniform mag-
netic field Hy; and a one-dimensional chain 20 atoms long of periodic square
wells with infinite potential at each end. Exact solutions have been obtained
for both the eigenvalues and the wave functions for arbitrary values of well
depth, well width, atomic separation, and magnetic field strength. Computa-
tions have been carried out for several well depths from 1 to 10 electron volts
and for several magnetic field strengths. Although the magnetic fields were of
the order of tens of megagauss, it has proved possible to associate these
states with corresponding zero-field states.

Three types of breakdown were considered for applicability to the model.

The simplest type was one in which the magnitude of the magnetic part of the
potential was equal to the depth of the "periodic" part of the potential.
Another type was one in which the field was so large that the increase in the
magnetic part of the potential over an atomic distance was equal to the well
depth. The third type of breakdown examined was Blount breakdown in which
foo B /B2 is compared with 1

c T g P :

An examination of the wave functions for various conditions showed that
below Blount breakdown the system is controlled by the periodic part of the
potential and the accompanying band structure. The most persistently apparent
characteristic of these results is that at a fixed magnetic field there is a
sharp change in behavior of the wave functions in going from a state corre-
sponding to the top of the first band in zero magnetic field to a state corre-
sponding to the bottom of the second band in the zero-field situation. This
behavior seems to admit an interpretation in terms of a change of orbits in
k-space between states on either side of a Brillouln zone.

When the magnetic fields become large enough to cause the system to under-

go Blount breakdown, the aforementioned differences between states flanking the
zero-field energy gap become attenuated to a large extent. Consequently, in
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this case, the periodic part of the potential plays a far less decisive role in
determining the behavior of the system.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, October 1, 1964

30

— J— [ . e Ca mr o om m T T T e e



APPENDIX A

DERIVATION OF EIGENVALUES
As mentioned in the section SOLUTION OF WAVE EQUATION, Bg is chosen as
arbitrary. Then the requirements of continuity of A(x') and (a/ax' )M (x') are

satisfied by matching the wave function at every boundary. The boundary be-
tween the OBh hill and the Oth well occurs at x' = w. Thus,

Pgee] = Dol (1)

x'=w X'=w

and

[ W] oy = B )] (a2)

Substituting equations (44) to (47) into equations (Al) and (A2) results in

W w _ ph
BJ cos wGp = By (A3)
and
-BPGY sin wGf = .A.lg (Ad)

Both equations (A3) and (A4) are independent of the value of g%. The remain-
der of the matching equations are considered next. At the boundary between the
nth well and the n®® hill (this boundary is the right boundary of the well
region and the left boundary of the hill region), x' = na + w and it is there-
fore required that

W - \n
%n(na + W) = %n(na + W) (A5)
and

agﬁ-kX(na + w) = E%T Xg(na + W) (AG)

By examining the form of %X(x') and kg(x') from equations (45) and (48),

it is noted that W(x') involves functions of x' - (na - w), whereas %%(x')

is expressed as a function of x' - (na + w). Thus, Ni(na + w) will be a
function of 2w and A%(na + w) will be a function of O. Therefore, the match-
ing equations will take the form
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(AY/GY)sinh 2wGy + Bf cosh 2wGy gl <0

. A¥(zw) + BY gn = 0 =3B (A7)
(A’}lf/G‘r”l)sin 2way + BX cos 2wGy g >0
and
Ag cosh ZWGX + BXGg sinh Zng gg <0
AT gr =0 = Ag (A8)
AY cos 2wG] - BRGY sin 2wCy gy > 0

Both equations (A7) and (A8) are independent of the value of gﬁ.

In a ver¥ similar way, the form of the matching equations at the boundary
between the n°® well and the n®® + 1 well (where x' = (n + 1)a - w) can be

readily expressed as

(Ai/Gll;l)sinh ZnG? + BY cosh 2hG] gt < 00
AE(Zh) + Bﬁ glg =0 #: BY .. (A9)
(aB/cl)sin 2nGE + B cos 2nGlt gl > 0
Al cosh 2nGE + BEGH sinh 2nGR gh <o
Ag gl =0 >= AL (A10)
AP cos 2naP - BRGR sin encl gl > 0

Both equations (A9) and (AlO) are independent of the value of gz+l. (The
simple form of the right side of these equations is one of the main reasons for

centering the wave functions as in egs. (45) and (46)).

These equations represent all of the conditions except the matching at the
last boundary in the chain. In the (N + l)th hill, use must be made of equa-
tion (47) for (x') at x' = Na + w. This value of x' will make %E(x') a
function of -2h. Therefore, matching at this last boundary yields the follow-

ing:
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In order to obtain the determinantal compatibility conditions from these
equations, it will be convenient to introduce some notation that will enable
the three possible expressions for the matched wave function (which depend on
the values of g) to be condensed into a single expression.

A C preceding an A or B will denote the coefficient of that A or
B in the appropriate matched wave function A, and C'A or C'B will denote
the coefficient of the A or B in the appropriate matched dk/dx’. A sub-
gseript L or R on the C will denote whether the mateching 1s at the left
or right boundary, respectively, of the region in which the wave function is
operating. Thus, w dis the right boundary of the 0t well and the left
boundary of the OBR hill, so that equations (A3) and (A4) can be written

W pW _ pht o
BOCRBO BO 0 (A13)
W oW h _
BoCrBo - £0 = O (Al4)
where
CrBG = cos WGy (A15)
' gg always > O
CRBV(; = -G'g sin wG‘g (A18)

In a similar way, it is seen from equations (A7) and (A8) that it is possible
to write

AYCRAY + BYCRBY - B} = 0 (A17)
1 1
Ao A" + BYC BY - Aﬁ =0 (a18)
so that
: W /oW
) sinh ZWGn/Gn
9
: W /W
sin ZWGn/Gn
cosh 2wGY
- 0 n
9 W ' W
CrBn = Cr #n = L (420)
X
cos 2an
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AW s \
Gh sinh 2an

Cgp BY = < 0

W W
-Gn sin ZwGh

- -
0
The superscripts + on the C's refer to the sign of the appropriate

Equations (A9) and (Al0) may be written in the same way. Thus,
h {a] W =
AECRAn * BECRBn = B =0

t

R

|
o

'ah o, pha'sh | AW
AECRAn + BnC Bn An+l -

where

(s h/ch
sinh 2hGl/GR

0
CEAE =< 2h

. h, h
sin ZhGh/Gh

\_
e h
cosh 2hGn
5 0
h _ o'Fah _
crBR = ¢ AR = < 1
L?os 2hgh
n
(G sinh 2ngh
n n
0
l+h
Cy BE = 4 0

h _. h
_Gh sin 2hGn
—

Finally, equations (All) and (Al2) become

g.

(A21)

(A22)

(A23)

(A24)

(A25)

(A28)
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Wa AW W W h
A¥cpal + BliceBY - alloalt = o (827)
Wl AW ' dah
AJICRAT + BYCRBY - AfCIAR = O (a28)
where CRAﬁ, CRBﬁ, CéAE, and CéB% have the same Torm as equations (A19)
and (A20) with n = N and where
: h /~h
rl81nh ZhGN/GN
0n
ciall = { -2h (A29)
e h/ah
L sin ZhGN/GN
(‘cosh 2nGh
I+Ah. = A
c b = 4 1 (430)
h
¥cos Zh(}l\T

The usual argument is now invoked, which says that 1f equations (A13),
(A14), (A17), (A18), (A22), (A23), (A27), and (A28) are to hold simultaneously,
then the determinant of all the coefficients must.vanish. This is the determi-
nantal compatibility condition that is being sought. Equation (ASl) shows this
determinant, which will be denoted by Dy. The columns are labeled according
to the A or B whose coefficient appears in Dy. It will prove convenient
to start with the equation for the last boundary and work toward the otk we11.

h W W h I
A A BR A1 Bla A Bj, - .. 4B By BY
el oAl cgEY 0 0 0 0 C 0 0 0
+cral ola¥ cpBY o 0 0 0 L. ) ° o
b _omh
0 0 1 CeAR | -coBR 0 0 0 0 0
0 1 0 -coab . .o'ml 0 0 0 0 )
An-1 CrBy-1 S
0 0 0 0 1 -C_AY . _C_BY 0 0 o (A31)
B*N-1 “CRPme1 ¢ -
' AW "W
0 0 0 1 0 Cppl L CRE 4 . - - 0 0 I
) 0 0 0 0 0 0 ... -CgAB  _cpBR o
o 0 0 0 0 o 0 ... -CpAB -cpBE 0
s} 0 o} o} 0 0 0 R 0 1 -cos ng
0 0 0 0 o] 0 o] Ce 1 0 @Y sin wG¥
o o
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The determinant Dy dis (4N + 2) X (4N + 2). It will be evaluated in the
usual way be expanding it in minors. By referring to (A31), it is seen that

-Cph¥ -CpEY o 0 0 0 R 0 0 0
h h
0 1 Cehy_ 1 CRBy.1 0 o C e 0 0 0
1 o -cpaR, -cpEf; o 0 ... 0 0 0
W W
0 0 0 1 CpA¥ 1 -CpBfi - - - 0 0 0
vw oW
By = CLAﬁ 0 0 1 0 CRAN_.1 CpBN_q - - - 0 0 0
o ah o ph
0 0 0 0 0 0 ... -CpAR _c BB )
‘yh _a'gh
0 0 0 0 0 0 N 0
0 0 0 0 0 0 ... 0 1 -cos WGy
0 0 ) 0 0 0 . 1 0 GY sin wG¥
-CRAK —CRBK 0 0 0 0 o] 0 0
0 1 -c_BR 0 0 ) ) )
R RON-1
_o'ah 1=h
1 0 Cphlt | -CpBR 0 ) 0 0 0
W W
o 0 0 1 CpA¥ 1 -CRBY . . .. 0 0 0
o' avw W
i CLAE o 0 1 ) Cely 1 -CeBr 0 0 o
: : : (A32)
o ah o @h
0 0 0 ) 0 0 cghl -coBh 0
. ,h \sh
0 0 0 0 0 0 ... -CHAD -cpBR 0
o} 0 0 0 o) o} .. 0 1 -cos wcg
WL W
9 0 0 0 0 0 .. 1 0 Cf sin wGl¥

It may be observed that the determinants which are the coefficients of CLAﬁ

and CﬁAﬂ, respectively, are identical except for their first rows. The coef-

ficient of CLAE is denoted by Sﬁ,'while the coefficient of CLAE is denoted

by §§. An attempt at descriptive notation is being made here since S§ and

§¥ are, respectively, determinants in which the upper right terms are -CRAﬁ
and -CRA§. With this notation

_ TWM ah W' _
Dy = SyCrAw - SyCréAy = © (A33)
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Now let SN be reduced to see if a pattern can be found whereby the
entire determinant can be evaluated readily. Expanding SN by minors yields

1 -cpaR, BB, O 0 ... 0 0 0
0 cpaR ., cpER. o o ... o 0 0
0 0 1 -CpAN.7 CgBN-1 ... O 0 0
0 1 0O CoA¥ . cpER . ... O 0 0
5 - 4¥$§ . . . . . . . .
0 0 0 ) 0 ... CpAl coEB 0
0 0 0 0 0 -CRAB -CgEB 0
o 0 0 0 0 Coe . 0 1 -cos WGy
0 0 0 0 0 O | 0 Gy sin wGp
-CREN 0 0 0 0 0 0 0
1 cpal, B, O 0 0 0 0
0 0 1 -CpAy; -CgBy.p - - - O 0 0
o 1 o —CﬁAﬁ_l -CRB§ ;- - 0 0 o
+ : : . . . . ) ) (A34)
0 0 0 0 0 R -chg —CéBg 0
0 0 0 0 o .. CphB coBB 0
0 o] o] 0 0 co. . 0 1 -cos ng
0 0 0 0 o C 1 0  Gf sin wGY

Expanding each remaining determinant by minors again yields
1 1
SN = -CRARSR.1 - CRBESR-1 (A35)

where Sﬁ 1 and SN 1 have a readily deducible connotatlon analogous to S§

and SN’ respectively. It should be noted that the determinants ﬁ—l

and SN 1 have a structure much like that of SN and 5%; they merely begin
1

with 'CRAN-l and -CRAN_l instead of —CRAN and -CRAﬁ, respectively, and

are of dimension two less than SK and 5%.

Similarly, expanding S§ by minors twice yields
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1 cpaR . -cpBR 0 0 0 0 0
'4h "gh
0 -CpAR . -CoBp . 0 o o o 0
0 0 1 CgAva OBy ° 0 0
0 1 0 ~Cph¥ | -CoEY 0 0 0
S = -CpAf
0 0 0 0 0 ... -CpAt - R 0
o o o) o 0 . .. -CpAB -cpBB 0
0 ) 0 ) 0 ) 1 -cos WGy
o 0 o) 0 0 1 0 Gf sin WG
-CBY o o 0 ) 0 0 0
1 -cpAll 0 -cpBR L ) 0 0 o o
0 0 1 -CeAu_, ~CRBy.. - - - 0 0 0
0 1 0 ~Cgh¥ | -CREY_ 0 0 0
-1 REN-1 (436)
+
0 0 0 0 0 . _CRAJS -CRBg 0
0 0 0 0 0 .- —Cf'{Af)1 -Cl;Bg 0
0 ) 0 0 0 c e 0 1 -cos WG
0 0 0 0 0 | 0 G sin wGy
Thus,
Wo_ wah _ Wah
Sy = ~CrApSN-1 - CrBrSN-1 (A37)
Since the form of Sll’\%-l and %-l is so similar to the form of S§
and éz\]l, respectively, it is clear that a general procedure now exists for
expanding Dy by minors in successive steps. Thus,
Wo_ wah Woh
Sp = -CRARSa.1 - OmBASn1 (a38)
BW = -C_AVS - C.BWgh (A39)
n R nn-1 Rn™n-1
and
h _ haw hew
Sp = -CrARSY - CrBRSY (20)
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t t
51 = -CRATE] - CREfSY (Aa1)

The process continues in this fashion until S% and §% are reached.

These have the special form indicated by the three columns and four rows in the
lower right corner of all of the previous determinants. Thus,

~CAR -c BE 0
Sg = 0 1 -cos ng
1 0 GY sin wGj
or
S% = -CRA%Gg sin wGf + CRB% cos WG (A42)
and
~-CphB  -cyBR 0
§O = 0 1 ~-cos ng
1 0 Gg sin wc%’
so that
53 = —CéAgGg sin ng + CéBg cos ng (A43)

Actually, equations (442) and (A43) can be made consistent with equa-
tions (A38) to (A4l) if the following identification is made:

5§ = -cos WGy (Asa)
oW _ AW s W
Sg = Gy sin wGJ (A45)

In going over what has been done, it may be noted that a procedure has
been developed for evaluating Dy by starting at the lower right corner and
working toward the upper left corner. Since this is a somewhat unusual proce-
dure, there may be some merit in summarizing it.

The terms Vo and Vé are fixed and then the eigenvalue for such a

V(x') is determined as follows: A trial value of E is chosen, Gg is
evaluated, and then S§ and S§ are obtained from equations (A44) and (A45).
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These values are then substituted into equations (A40) and (Aél) and by succes-
sive application of equations (A38) to (A4l) all of the S's and S's through
St and Sff are obtained. Then the quantity in equation (A33) is found,

1
Dy = Clﬁﬁﬁﬁ - Clﬁﬁsﬁ, and a decision is made as to whether .it is sufficilently
close to zero. If it is, the trial value of E 1is chosen to be an eigenvalue
for the fixed Vo and V) assumed. If the Dy so formed is not close
enough, the entire procedure is repeated with a new trial value of E until
a sufficiently small Dy 1s obtained. Actually, there are many eigenvalues
for each given V5 and Vé, as can be seen from figures 3 and 4.

It is readily seen that for odd A(x') the only change that need be made

in the aforementioned procedure is that %g(x') = Ag sin ng'/Gg and that SY
and §g will be given by

Sg = -sin ng/Gg (A46)
§g = -cos WGX (A47)
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APPENDIX B

DERIVATION OF WAVE FUNCTION

Once having obtained an eigenvalue, the unnormalized wave function for
that eigenvalue is readily obtained from the matching equations shown in
appendix A. Since Bg is going to be used as the arbitrary amplitude, there

immediately results (from egs. (Al3) and (A14))

h _ aWp'lnwWw _ (_aW s W\ W
AJ = BYCREY = ( GY sin WGO)BO

BS = BYCRBY = (cos wC¥)BY
Thus,
AY/BY = -G¥ sin wdl (B1)
BY/BY = cos wGl | (B2)
Equations (Bl) and (B2) are then substituted into equations (A22)

and (A23) with n = O, the results substituted into equations (A1l7) and (A18),

and these equations used successively until A§/Bg and B%/Bg are obtained.
At this point A% can be obtained from equations (A27) or (A30). If the value

of Dy used to find the eigenvalue was sufficiently small, then the values of

Aﬁ/Bg obtained from these two equations will be close enough. If Dy were
actually O, then the values of Aﬁ using the two equations would be identical.

The set of coefficients of A(x') in each interval having been obtained,
the (unnormalized) wave function at any given value of x' can be computed.
The normalization of K(x') would allow a comparison to be made between the
relative probabllity densities of eigenfunctions belonging to different eigen-
values in any region. This procedure is carried out in appendix C.

For odd MNx'), AY will be used as the arbitrary amplitude, and instead
of equations (Bl) and (B2), there will be

A%/Ag = cos(wGY) (B3)
BB/AY = sin(wGl)/GY (B4)

The remainder of the procedure is unchanged.
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APPENDIX C

NORMATLIZATTION OF WAVE FUNCTION

The wave functions will be normalized in the usual way; that is, the
otherwise arbitrary constant Bg is determined so that

o
|Mx)]? ax' =1 (c1)
=0
As has been seen, AN(x') assumes a different form in each interval and,

within a given interval, for each sign of the appropriate g for that inter-
val. Whether the solution be even or odd, it will still be true that

/m |7\(x')|2 ax! = 2 [ |7\(x')|2 ax' (c2)

Furthermore, the right side may be broken up in the following way (taking
account of the fact that A(x') = 0, x' 2 (N + 1l)a - w):

o N (n+l)a-w
7\X' 2 - /W [/ ]
dér | ( )I = (0] .+;§;; na+w
N na+w
ANx')|? ! C
+Z<4-w>'()'dx (c3)

n=1

The MN(x') in each interval may be replaced by its special form as given in
equations (45) and (46), and the normalization condition obtained in the form

W N [ (n+l)a-w
i W(xt)]2 1 \ / he 1y(2 .]
L [ paeere e 2oL P e
n=0
na+w
+ [,44« RHEDIE ax] (ca)

n=

In appendix B, a procedure was displayed for obtaining each of the coef-

ficients Ax, BX, Aﬁ, and Bg in terms of Bg. It is clear then that, if all
coefficients be expressed in terms of Bg, the wave function in each interval

43



can be written as Bfj(x') or Bgfg(x'), where ffi(x') and fﬁ(x') are the
forms of Ni(x') and %E(x‘), respectively, after the AY, BY, A%, and Bﬁ

have been so expressed.

If

5 =.A(w-|fg(x‘)|2 ax! (c5)

(n+l)a-w
P = |£B(x") |2 ax' (ce)
atw
and
na-tw
SOl AL COTERS (e
a—

there results at once (using eg. (C4))

VoW 2 _ 1/2 .
|Bo|l ™ = N N (c8)
W W
S IR IR
n=0 n-1

The remaining task is to find the F's. The form of fg(x') is always

cos Gf¥x'; therefore,

W
sin Zng
W+ — (co)

Y = cosngx' dx' =
2G4

N

0

Each of the remaining F's may have several forms depending on the value of
g that goes with the f 1in question. It is readily ascertained that the

change of variables

x' - (na - w) for a well region (c10)

v

Il

b =x' - {(na + w) for a hill region (c11)

will simplify the algebra involved in evaluating the F's. With these changes,
there remains only the evaluation of the following integrals:
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h h
. sinh 4hG
12 sinhﬁthdu= h2< 4:hGhn_
(@) J, (a}) n
2h N
sinh 4hG
cosh?Gy au = h [ —————=+ 1
n
0
h 2h
= sinh G%.L cosh G%J. ap. = L sinh ZG%L ap
ab ool
n n
0 0
= (cosh 4ncl - 1)
h
4(Gy)
2h 5
2h
/ 2 o = (22
0
2h
Jg du = 2h
2h
2
2h
J/f o = ( 2)
0
eh in 4hGR
sin
12 sinZG.Epdg= hzl-—»—————-ﬁ
(ch) (ch) 4nGg)

2h _ n
sin 4hGy
coszG-Eu dp = hil +

A 4nch

2h 1 2h
@l/ sinGgp cos G%.Ldu=——/ sinZG%.Ldu
n

h
26
0 )

= = 1 - cos 4-hGh
hy\2 n
4(Gy)

(Ciza)

(C12p)

(C1lzc)

(C13a)

(C13b)

(C13c)

(C14a)

(C1l4p)

(Cl4c)
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Equations (C12) to (Cl4) are the forms involved when g% is negative,
zero, and positive, respectively. Corresponding well integrals are exactly the
same with w vreplacing h each time the latter occurs.

If the ao's and PB's are defined as the ratios of the A's and B's to
Bg so that

deg = Ag (C15)
Bng = BX (cie)
oBEY - Al (c17)
Bng = Bﬁ (c18)
then
2 2 * *
R = jo2| (el + |88 %To] + (oB'BR + o2E2")(c] (c19)

w%ere (al, [bl, and [c] are obtained from (C12), (C13), or (Cl4) depending on
&n-
Similarly,
2 2 * *
- Jol[®al + [pE|PIo] + (o2 + opX")le] (020)

SE

where [al, [bl, and [c] are obtained from the equations corresponding to (Cl2),
(€13), and (Cl4), respectively, for a well region.

By choosing the forms in equations (45) and (46) as has been done, all of
the A's and B's will be real (and thus also the o's and B's). Then
equations (C19) and (C20) may be written

B = (a1)Tal + (82)°[b] + zaBpbic] (cz1)
P o= (ag)z[a] + (Bx)z[b] + 2ap By lc] (c22)

Now Fﬁ and FX can be written in full:
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-
o [sinh 4nch n\2 sinh 4hGH )2 A
n& \ anch (an> TR 4nch ( n)
(ch) o n
. h heh
+ ( h)z (?osh thG]_,l - l)(mnﬁn>
2\G,
th_<(2h)3 ha2 ny2 2, wn & c
o= =— (o)™ + (20)(B7)" + (2h) (aphy) (c23)
. h . h
n i 1. sin 4hG} (@%>2 Y P sin 4an (é%>2
(Gﬁ) 4nch 4nGh
1 h\( h;h
+ - > (l - cos 4hGh)(1an)
L 2(0%)
p,
- )
W sinh 4wGp _ 1 <@W)2 + ofsinh awCy | 1 (BW>2
(G§>2 4WG§ o 4w GY 0
+ 5 (cosh awGy - 1)(0@3}{)
Z(GW)
0 5 2 2
Fp = % Q‘;—)— (o{g) + (ZW)(BX> + (2w) (ouﬂ@‘r{) >  (C24)
in peren 2 sin 4wGY 2
(o) o )
(Gﬁ) 4Gy e
+ ___l_g <l - cos 4WG§)(@XBK)
2(3%)
\ . o

This completes the normalization.
tions (C8) are given by equations (C21), (C22), and (C9).

All of the quantities needed in equa-
If they be substi-

tuted in the right side of (C8) and the square root of the result taken, then

the value of B

¥ so obtained will cause equation (C1) to be satisfied.

It should be noted that the results hold both for even and odd eigen-



functions, the only differences between these cases being that, first, a coef-
ficient other than BY will have to be chosen as arbitrary (since NJ(x') will
be of the form Ag sin G‘gx' /Gg) » which will make F¥ take the form

sin 2wGo
FW = W 1 - 0 (C25)

O (GW>2 ZWGS
0

Secondly, the resulting «'s and B's will be different for odd A(x').




APPENDIX D

FORTRAN IV PROGRAM FOR COMPUTATIONS OF EIGENVALUES
General Description

This program written in Fortran IV language (actually a converted For-
tran IT program) was used to compute the eigenvalues shown in figures 3 and 4.
It is arranged to operate with the Lewis Research Center 7094 monitor system.
It consists of a main routine and four subroutines. The main routine and the
first subroutine are also used in the program to compute the wave functions.

Before listing the individual routines, it will be useful to note the
following:

By using equation (56), ngg may be written

n.., = —> (D1)

so that
Vo

W Vo (D2)

2 1t
(Vi) gg = ns8V0 =

As indicated in the section RESULTS AND DISCUSSION, the computations have
been carried out to values 50-percent greater than (VM) . Thus, the computa-

tions are carried out to a value of H large enough to make VM(X’)= S(VM)SB/Z

or
2
Vv
3 0 1 2rrl
2 = =N D3
(&) )

. . 1
from which a maximum value of Vb was chosen. Thus,

') _!EKE;ZQ (D4)

(VO max 2N

Normally, this quantity was computed by the first subroutine VOPFIX for
each value of VO, and then computations were made for various multiples of

(1/8)th of this value. For some purposes, computations were desired for a
fixed (VO)max for several values of V, (see fig. 4). This procedure was then

not suitable, and (Vé)max was read into MAIN and remained unchanged for all of
the values of Vo set by MAIN.
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A list of the routines and a short description of their primary functions
follows.

MAIN determines what is to be computed (eigenvalues or wave functions) and
stores the wvalues of the parameters to be used by the subroutines in computing
the eigenvalues.

Subroutine  VOFFIX fixes the value of Vy(x') to be used in the computa-
tions. :

Subroutine EVFIND sets limits on search for eiéenvalues, stores the eigen-
values found by other subroutines, and prints and/or punches the eigenvalues on
sheets and/or cards.

Subroutine ZERO locates changes in sign of the determinant Dy as trial

values for E are stepped, tests it for closeness to zero, and returns values
of Dy and roots found to EVFIND.

Subroutine CALC computes value of Dy for trial values of E given to it
by ZERO and returns value of DN to ZERO.

Details of Individual Routines

MAIN provides needed flexibility in the computations. Desgired values of
N, w, h, a, and Vy as well as the number of different values of VO in a

given run are fixed first. Then the following options are decided:

VPSLCT determines whether the value of VM(X’) will be computed by VOPFIX
or set in MAIN.

EVSKIP determines whether eigenvalues or wave functions will be computed.

EVODD determines whether even or odd solutions are to be used in the com-
putations. If it is decided to compute eigenvalues, then DWRITE determines
whether or not each computed value of Dy will be printed out along with the
trial value of E.

Next, various quantities are read in that determine the starting trial
value to be used for E, the amount by which subsequent trial values are to be
stepped, and the quantities to be used to determine whether the computed value
of Dy 1is close enough to zero to permit the corresponding trial value of E
to be accepted as an eigenvalue. Control is then transferred to a DO-loop that
sets values of Vj, after which the program is terminated. That portion of

MATN used to compute the wave functions will be described in appendix E.

Subroutine VOPFIX, like MAIN, is used in computing wave functions as well
as eigenvalues. Primarily, it sets specific values for Vé. Secondarily, it
computes the corresponding values for H in kG as well as the number of the
atoms in the chain at which weak breakdown and strong breakdown occur. If
EVSKIP was not equal to 2 in MAIN, then VOPFIX will call EVFIND.
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It should be noted that a dummy subroutine NORMAL must be included in the
deck when computing eigenvalues or the program will not run.

Subroutine EVFIND sets the starting value of E at which the search for
eigenvalues is to begin and the maximum value for E at which the search is to
terminate. When an E and its corresponding DN value are received, both are
stored, a new starting value 1s chosen to be given to ZERO, and the process is
continued until all the eigenvalues in the desired range have been found. All
of the eigenvalues and the corresponding values of DN are then printed.

Those eigenvalues for which the DN's are sufficiently close to zero are
printed again separately. These latter eigenvalues are also punched out on
IBM cards for use as input data in computing wave functions.

Subroutine ZERO sends the starting value of E obtained from EVFIND to
CALC, which sends back the corresponding value of DN. The value of E is
then increased by an amount set in MATN and called STEP. This new value of E
is again sent to CALC, which again sends back the corresponding DN. The en-
tire process is continued until the sign of the DN +that is sent back to ZERO
changes from the sign of the last DN sent. At this point, a linear interpo-
lation procedure begins and continues until |[DN is smaller than an amount
set in MAIN and called DTEST or until the amount by which the linear interpola-
tion changes E 1is smaller than another quantity set in MAIN called PRECSN.
When either of these two events occurs, the last values of E and DN are re-
turned to EVFIND along with an indication (by means of sense lights) of which
of the two events characterizes the particular pair of values of E and DN.

Each trial value of E along with the corresponding value of DN will be
printed or not in accordance with the value of DWRITE that was set in MAIN.

Subroutine CALC utilizes the procedure indicated in appendix A to compute
the value of DN when all of the parameters are fixed. Both even and odd so-
lutions can be used in this subroutine.

Input Data

Units for the input data are the following: energy, electron volts;
length, angstroms; magnetic field strength, kilogauss.

The data are input from tape 5. The names of the quantities for which the
data are used together with a description of the actual use are now listed.
The subroutines in which these quantitles are used follow each description.

number of atoms in positive half of chain (MAIN, VOFPFIX, EVFIND, CALC)

N
W width of well portion in one period of VP(X') (MAIN, CALC)

pae

width of hill portion in one period of Vp(x') (MAIN, CALC)

=

distance of atomic separation (MAIN, VOPFIX, CALC)
KT  beginning value of cycle of values of V5 set in MAIN
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K8

VPSLCT

VPCHS

KIP

KFP

KSP

EVSKIP

EVODD

DWRITE

XSTART

STEP

PRECSN

DTEST

XTEST

largest value in cycle of values of Vo
step in values of cycle of values of VO

1, has MAIN fix VC'); 2, has VOPFIX fix vé (MATIN, VOPFIX)

value of Vé given to MAIN (this card omitted if VPSLCT is 2) (MAIN,
VOFFIX)

beginning value of multiple of fractional value of (Vé) used in
VOPFIX to set values of V) (MAIN, VOPFIX) max

final value of preceding description
step in value of preceding description

1, does not compute eigenvalues; 2, does compute eigenvalues (MAIN,
VOPFIX)

1, computes even eigenvalues; 2, computes odd eigenvalues (MAIN, CALC)

1, values of DN printed in ZERO; 2, values of DN not printed in
ZFERO

beginning trial value of E in a set of computations seeking zero
value of DN (MAIN, EVFIND, ZERO)

value by which each successive trial value of E 1is stepped in pro-
cess described previously (MAIN, EVFIND, ZERO)

minimum interval of change from one trial value of E +to another in-
terpolated one that allows interpolation procedure to proceed (MATN,

ZERO)

maximum absolute value of DN +that permits the eigenvalue to be used
in computing wave functions (MAIN, ZERO)

minimum interval of change from one trial value of E +to another in-
terpolated one that allows ZERO to keep searching; if change is
smaller than this and DN is less than DTEST, trial value is suit-
able for use in computing wave function; if DN is still larger
than DTEST, search stops but the last trial value of E 1is unsuit-
able for use in wave function computations (MAIN, CALC)

A listing of the subroutines used in computing the eigenvalues follows.
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OO0 o

o000

DIVMENSICN JDO(100)
DCUBLE PRECISICN XSTART,STEP,XMAX,PRECSN,DTEST,XTEST
DCUBLE PRECISICN WyH,A,VO,VPCHS
INTEGER XDSIZE,EVSKIP,CWRITE,EVODD,VPSLCY
COMMCN CCNM
EQUIVALENCE (A,COM{1))+(W,COMI(3)),(H,COM(5))s(VO,COM(T)),
LINJCCM(16) )y {XSTARTH,ESTART,COM(11)),(VPSLCT,COM(330)),
2{DWRITECOMITI6)) o (KIP,COM{13) ), (KFP,COM{14))y(KSP,COM{15])),
3(NI,CONM(L7)) o (NF,COM(18))y (NS,COM{19)),{EVODD,COMI329)),
4{EVSKIP,COM(223))+{JEV,COM(224)),(JIDO,COM(225) ), (KPLOT,COM{574)),
S(STEP,CUM(797) ), (PRECSN,COM(799) ),y (XMAX,EMAX,COM{BOL)}),
6(CTEST,COM(803)), (VPCHS,COM(331)),(XDSIZE,COM(80T7)),
T{XTEST,COM(811)),{LTMyCOM(814)),{LTN,COM(B15)), (KN,COM{B16)),
BIKSXyCCM{BLT7)}y(KSY,COM(BLB))}+(FXyCOM(819}),(DX,COM(820)),
9(FY,CONVM{B21))4(DY,COM{B22))
1 READ (5,71)N
71 FORMAT(I4)
READ (59 72)W,sH,A
72 FORMAT(3D01C.3)
READ  (5,75)KI+KF4KS
75 FORMATI(314)
VPSLCT = 1,2 HAS MAIN,VOPFIX CHOOSE vOP
READ (5,71) VPSLCT
IF (VPSLCT.EQ.2) GO Y0 6
READ (5,78) VPCHS
78 FORMAT (C15.8)
6 READ (5,75)KIPKFP,KSP
EVSKIP = 1,2 MEANS WAVE FUNCTION,Ev CALCULATED, RESPECTIVELY
READ(5,74)EVSKIP, JEV
T4 FCRMAT(214)
READ (5,71) EVCDD
EVCCD =142 GIVES EVEN,CCD SOLUTIONS,RESPECTIVELY
WRITE {64,62) (NyWyHyAsKIyKF,KSyKIPKFP,KSP,EVODD,yEVSKIP)
62 FORMAT(LIHK 10X 2HN=1292Xy 2HW=F4,242Xy 2HH=F 4,24 2X4 2HA=F4.242X,
19HKI yKFyKS=313,14H, KIP,KFP,KSP=313,8H, EVODD=12,9H, EVSKIP=12)
IF (EVSKIP.EQ.1) GO TC 4
READ (5,71)CWRITE
DWRITE =1 WRITES DN
REAC (5,73)XSTART,STEP
73 FORMAT({2C11.4}
READ (S5,T7T)PRECSN,CTEST ,XTEST
77 FORMAT(3011.4)
WRITE(6+463) (DWRITE s XSTARY,STEP,PRECSN,DTEST,XTEST)
63 FORMAT(LHK, 10Xy 7THDWRITE=12,2X,12HXSTART,STEP=2D12.4,
12Xy 19HPRECSNy DTEST,, XTEST=3C12.4)
GO TO 5
4 READ (5,75)NI4NF4NS
READ (5,76} 4DC
76 FORMAY (7011/30I1)
KPLOT = 1,2 MEANS PLCT MADE, SKIPPED ,RESPECTIVELY
READ (5,71} KPLOT
IF (KPLOT.EQ.2) GO TO S
NC CF POINTS IS = TO THE VALUE OF XDSIZE
READ (5,71) XDSIZE
LTV SPECIFIES NUMBER LINE SPACES BETWEEN GRID LINES
LTN SPECIFIES NUMBER OF PRINT SPACES BETWEEN GRID LINES
KN IS THE NUMBER OF CURVES
EXP{KSX,KSY -6} TIMES FX,FY OR TIMES DX,DY = ACTUAL STARTING VALUES
OR CHANGES IN GRID VALUES
READ (5451) LTM,LTN,KNyKSX,KSY
51 FORMAT (514)
FX USED TO SPECIFY STARTING VALUE OF VERTICAL SCALE
DX USED TO SPECIFY CHANGE IN VFRTICAL GRID VALUES EACH LINE SPACE
FY USED TO SPECIFY STARTING VALUE OF HORIZONTAL SCALE
DY USED TO SPECIFY CHANGE IN HORIZONTAL GRID VALUES EACH PRINT SPACE
READ (5,52) FX,DX,FY,DY
52 FORMAT {4F8.3)
5 IF {(KI.EQ.0) GC 7O 11
D0 10 I= KI,KF,.KS

2 vo=1
1C CALL VCPFIX
GC 710 12

11 vC = 0.0CO
CALL VCPFIX
12 sSTCP
END
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C GIv

63

16

18

17

19

20
62

11

71
12
13

14
15

SUBRGUTINE VOPFIX
ES CPTICN OF NOT CALCULATING EvV

DOUBLE PRECISICN WeHsAyVO,VOP,EV,VPCHS XN, VPINT,B8VOP,C
INTEGER VPSLCT,EVSKIP

CCFMMON CCM

EQUIVALENCE (A,COM{1))},{W,COM{3))y(H,COM(5)}),(VO,COMLT7)),
LIN,COM(16)),(VCP,COM(325)),(VPSLLT,COM{330)},{VPCHS,COM{331)),
2(DWRITEZCONITI6)) 4 (KIP,COM(13}),(KFP,COM(14)),(KSP,COM(15)),
3{EVSKIP,CCM(223)),([JEV,COM(224))

IF (KIP.GT.0) GO TO 1

vOoP = 0.00

WRITE (6,63)

FORMAT ( LHKy5X46HVOP=0,3X,5HHM=033X, 21HNO MAGNETIC BREAKDOWN/LHK}
GO TO (16417),EVSKIP

00 18 J2 =1,JEV

READ (5,71) EV

CALL NCRMAL(EV)

CONTINUE

GO TO 15

CALL EVFINC

GG TG 15

XN = N

VPINT = KFP

BVCP = VC#CSQRT(1.5D0}/(2.0D0*XN=VPINT)

CH = 8.793984E-12

DO 14 J= KIPyKFP,KSP

c=1J

GO 7O (19,3),VPSLCT

vOP = VPCHS

GC 10 20

VCP = C#BVCP

HM= SQRT{VCP/CK)/A

WRITE (6,62)V0,VvOP,HM

FORMAT (1HK ,,5X 3 3HVO=F5.192X94HVOP=F5.4, 16Xy 3HHM=, 1PEJ.3,/1HK)
GG TO (11,13),EVSKIP

JEV =JEV

D0 12 Jdl= 1,JEvV

READ (5,71)EV

FORMAT(D23.16)

CALL NCRMALI(EV)

CONTINUE

GO TO 14

CALL EVFINC

CONTINLE

RE TURN

END



SUBROUTINE EVFIND

DOUBLE PRECISION E,CN,ROOT,XSTART,XMAX,PRECSN, XBEGIN,RO0T1
DOUBLE PRECISICN EV4EV1,DEVsDEV1sWeHsAy VO, VOPy XTEST
DIMENSION EV{100),EV1(100),DEV(100),DEV1(100}

CCMMCN COM

EQUIVALENCE (A,COMIL1)),(W,COM{3) ),y (H,COMI5)),{VO,COM(T)),
L{N,CCM{16))+{VCP,COMI325)),(ROOT,COM(9) )y (XSTART,ESTART,COM(11)),
2(NEV,COM(20))+{EV,COM[21)),(E,X,COM{327)), (XTEST,COM(8L1)),
3(STEP,COM(T97) ), (PRECSN,COMIT99) ), [ XMAX¢EMAX,COM{801}),
4(DTEST,COM(8BO3)), (DN,CCM(BOS5) ), (XBEGIN,COM(809))

DO 6 J=1,1C0O

EV(J) = 0. CO

DEV(J) = 0.0D0

DEV1(J) = C.0DO

EV1i(J) = 0.0D0

XN = N

IF {VO.€EQ.0.0D0) GO TO 25

BEMAX= XN#VO#SCRY(1.5)/2.0

IF (BEMAX-VO) 3,3,4

EMAX = VC + 0.5

GO 10 5

EMAX = BEMAX + 0.5
GG T0 5

XMAX = 25,000
XBEGIN = XSTART
NEvV = 0

DC 15 J= 1,100

7 CALL ZERC

C SEN

<
1C

C sSLl
C NEV
18
19
11
12
22
21
13
14
15
16
64
61
62

20
63

SE LIGHT 1 CN IF NO ROGT FOUND FOR X .GE. EMAX
CALL SLITET({1,KO00FX}

GC TO(8,+9)+KOOOFX

NEV = NEV +1

EVINEV) = Cc. DO

DEV (NEV) = 0.0D0

EVild) = 0.0D0

DEVL{J) = 0.0DO

1 TO 16

Jv (JeGTe1) GO TO 11

EvitJd) = RCOT

DEvV1i(J) = €N
TE 3 ON IF RCOT CANNOT PASS DN TEST
CALL SLITET(3,K)

GO TO (19,518),K

= NUMBER OF EVS WHICH ARE CN TESTED
NEv = NEV +1

EV(NEV) = RCOT

DEVINEV) = DN

ROCTYL = ROCT

GO TG 14

IF (ROCTY .GE.EMAX) GO TO 16

IF (DABS{ROCT — ROOT1).GT. PRECSN) GO 7O 10
CALL SLITETI(3,K)

GO TO (13422),K

IF (NEV.GT.0) GO TO 21

NEV = NEV ¢+ 1

EV(NEV) = RCOT

DEVINEV) = EN

XBEGIN = RCOT + STEP
GO 70 7

XBEGIN = RCCT
CCNTINUE

WRITE (6,64) VC,VOP

FORMAT (1HKs10Xy3HVO=F4.1s4Xy4HVOP=F8.4/1HK)

WRITE(6461) (EV1(I),DEVI(I)}sI=1,4J)

FORMAT {(50X,9HALL ROOTS//2(28X,2HEV,28Xy2HDN)//(4D30.16)}
WRITE (6562) (EVII)oDEVII}+I=14NEV)

FORMAY (30X,37THEIGENVALUES HAVING DN LESS THAN DTEST//
12(28Xs2HEV,28X,2HDN)// (4D30.16))

DO 20 L=1,NEV

WRITE (6,463) (EVIL),DEVI(L)N,VO,VOP)

FORMAT (1H$4D23.164D12.352Xy2HN=12,2Xy3HVO=F4.1y10X,4HVOP=F6.3)
RETURN

END
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101
61
102

120
63
121

103
104

@~ oW

0

10

106
11
12
13

16

17
18

19

20
21
22
23
24
25

107
62
108

14
15

56

C 2ERO LIST,REF,DECK

SUBROUTINE ZERO

DOUBLE PRECISION XSTART,STEP,XMAX,PRECSN,DTEST,XBEGIN,ROOT,DN
DOUBLE PRECISION Xy XlyX29T1l,T2,DABS,E,XTEST

DOUBLE PRECISION WyHyA,VO,VOP

INTEGER DWRITE

COMMON COM

EQUIVALENCE (A,COM{L1})y(W,COM(3)),{H,COM(5)),(VO,COMIT)),
1(N,COM(16)),{VOP,CDM(325)),(ROOT4COM(9) ), (XSTART,ESTART,COM{L1) )},
2(STEPLOMIT97)) 4 (PRECSN,COM(799) ), { XMAX,EMAX,COM(80L1)),
3(XTEST,COM(8L1)),(DTEST,COM(803))4(ON,COM(B05)),
4{EyX,COM{327) ), (DWRITE,COM{T796) )4 { XBEGIN,COM(809))

X = XBEGIN

CALL CALC

GO TO {(101,102),0WRITE

WRITE (6+61) E,DN

FORMAT(10X,2(D28.161})

IF (DN} 1+2,3

J =1

GO 7O 4

ROOT = X

IFIDWRITE.EQ.2) GO TO 15

WRITE (6,463) ROOT,DN

FORMAT{10X,2(D28.16)44HRO0OT)

GO TO 15

J =2

X1l = X
Tl = DN
X = X1+STEP

CALL cALC

IFIDWRITELEQ.2) GO TO 104

WRITE(6,61) ELDN

IF (DN} 54246

GO TU (7,8),J

GO TO (By7)d

IF (X-XMAX) 4414,14

T2 = DN ’

X2 =X

X = (DABS{T1)#X2 + DABS(T2)»X1)/{DABS(T1}+DABS(T2))
IF{X2-X.LE.PRECSN) GO TO 16

CALL CALC

IFIDWRITEL.EQ.2) GO TO 106

WRITE{6,61) E,DN

IF {DN) 11+2,12

GO TO (13,8),J4

GO TO (8,13),J

X1l =X

Tl = DN

X = {DABS{T1)#X2 + DABS(T2)=X1)/(DABS(T1)+DABS{T2))
IF (X=-X1 —PRECSN) 17,17,10

J2=2

GO TO 18

J2=1

CALL CALC
IF(DABS(DN).GT.DTEST) GO TOD 20
Jl=1

GO To 21

Ji=2

GO TO (2,22),J1

GO TO (23424)4J2

IF [(X—=X1-XTEST 125,25,10
IF({X2-X-XTEST)125,25,10
ROOT = X

GO TO {107,108),DWRITE
WRITE {6462) E+DN

FORMAT (10X,2(D28.16),12HDN TOO LARGE)
CALL SLITE (3)

GO TO 15

CALL SLITE (1)

RETURN

END
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SUBROUL
INTEGE
SUBROU
INTEGE
DOUBLE
UOLUBLE
DouBLE
DOUBLE
oouBLE
DOUBLE
CUMMCN
EQuIvA

LEN,COMEL6) ), tVvOP,COMI325}1), (RUOT,COMITF})» { XSTART,ESTART,COM(LL)),

2(EeX,C
EQuIva

TINE LALC

R EVCLC

TINE LaLC

R EVCLC

PRECISICN wyHy A, VU, VUP
PRECISIGN UNyEoDABS+DSQRT yGOW, WGOW,RGOW,RBGOW, X[ 4 XJy XN
PRECISICNBGJIH,BGIN, ABGIH, ABGIW, GIH,GIW,RGIW,RCIH,RBGIH
PRECESIUN  EXPP v+ UEXP v THGJUH , EXPN ¢+ CSHF
PRECISIUN SNHF » CSF v DCOS » SNF » DSIN
PRECISEION RBGIAy) XNy BONH, ABGNHy GNHETA,CS, TWGIW, TWLNH
COM

LENCE (A4COMIL) ), (WyCOMIB) ), {H,COMIS))(VO,COMITH),

UMI[327))o{EVODD,COM(329)),(DN,COM(805))
LENCE (RGOWsRGIW), (RBGOW,RBGIW)

C SUBROQUTINE SYMBULLE RGIWsRBGIW,RGJIH,RBGIH CORRESPOND TO TEXT
SYMBOLS SNw,SNa-BAR,5NH, SNH-BAR,RESPECTIVELY

[

701
702
703

704

705

706
200

210
201

202

203

300

301

3t
302
303

313
600

ETA =0
GOw =
HGOW=m
GO 1O
RGOW =
RBGOwW
GO0 TC
REGOW
IF (w6
RGOW =
GD TG
RGOW =
oo 300
J=f-1
xi=l
XJ =J
BGJIH=
BGIw =
ABGIn=
ABGJH=
CJdr =
Giw =
THGIw
THGJH
1FLBGY
EXPP=
EXPN =
CSHF =
SNFF =
RGJIH
REGJH
6o T1C

-512335100
ETA®DBCRT(E)
*GON
(704,705),Ev000
-DCOS{WGOW)
*GONCLSINIWGOW)
200

= ~DCOSIWGON}
Omw .Ewe 0.D0) GO TO 706
~DSINIWGOW!/GOW
2C0

-

I=1etv

E- XJe®2sV0OP-VQ

E- X{ep2evOP

DABS{8GIiw}

CaBSIHCJIH)

ETAPCBHLRTIABGIH)
ETAPOSCRT(AGGIW)

= 2.00 » welGlwW

= 2.00 sHe GJH
H) 1e2,3
DEXPLTHGJIH)

QEXPL~THGJR)

(EXPP+ EXPN}/2.00

({EXPP- EXPN}/2.00
= - (RGIWeCHHF + RBGIWSSNHF/GJR)
= —{RGIWaGJHRSNHF +RBGIWeCSHF)
210

RGIH == (RGEIn+2.008HeRBGI W)

RBGJH
6o TO
CSF =
SNF =
RGJH

RBGJR
IFLBGI
ExPpP=
EXPN =
CSHF =
SNHF =
RGIwW

RBGIwW
GO TG

2-RBGIwW
210

CCOSLTRGAR)
CSINETHGUH}

= ~{RLIW®CSF ¢ RBGIWSSNF/GJUH)

= RGIneGJH®SNF — RBGIwW»CSF
W) 201,202,203
CEXP(TWGIw)

DEXP{~TwGlw)

(EXPP+ EXPN)/2.00

{EXPP~- EXPN}/2.00

= ~{ROLJH®CSHF + RBLJH®SNHF/GIW)
= —~(RCJHuGlWe SNHF #RBGJH=CSHF)
oo

RGIW = (RGJF+2.00ewWsRBGIH)

RBGIwW
6a G
CSF =
SNF =
RGEIW
RBGIw
CONTIN
XN =N
BGNH =
ABGNR=
GNk =
THGNH
IF(BGN
EXPP=
EXPN =
CSHF =
SNHF =
ON = -
GO TG
DN=-(R
GO TG
CSF
SNF
DN = -
RETURN
FND

2—ROLJH

300

OCUS(TWGIw)

CSIN(TuGIwW)

= -{RLJHOCSF ¢ RBGJH#SNF/GIWI
= RGJH #GIne3INF ~-RBGJHeCSF
ut

E-XNps2evOP-VO

CABS(BGNHR)
ETA*DBCRT{ABGNH])

= 2.L0=HeGNH
k) 301,302,303

LEXPLTHFGNH)

QEXPL{-THGNH)

LEXPP+ EXPN)/2.DO

(EXPP=- EXPN)/2.00
{RGIwneCHHF+ RBGIWeSNHF/GNH)
aCo
GIW¢2.COrHaRBGIW)
&6C0
CLOSETHUNRD
CSINUTFGNR)

(RGInpCHF o RBGIWeLNF/UNH)
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APPENDIX E

FORTRAN IV PROGRAM FOR COMPUTATIONS OF WAVE FUNCTIONS
General Description

Iike the eigenvalue program, this program operates with the Lewis 7094
monitor system. It consists of the same MAIN listed in appendix D plus eight
subroutines. The following is a description of the primary functions of the
routines:

MATN determines what is to be computed (eigenvalues or wave functions) and
stores the values of the parameters to be used by the subroutines in computing
the wave functions.

Subroutine VOPFIX fixes the value of VM(X') to be used in the computa-
tions and feeds eigenvalues to subroutine NORMAL.

Subroutine NORMAL computes and stores ratios of coefficients of sin- and
cos-like terms in each interval (the A 's and B,'s in egs. (45) to (47)) to
the arbitrary coefficient in the oth wel1. (These quantities are the a,'s
and B,'s of egs. (C15) to (C18).) Tt also normalizes the wave function by

finding the value of the Bg (or Ag) that will make

[mm l?\(x')]z dx' =1

in accordance with the procedure in appendix C.

Subroutine WFC computes the normalized A,'s and B,'s and sends them to
other subroutines to be used in computing actual values of the wave function in
the entire range x' =0 to (N + 1l)a - w. The other subroutines return the
wave function values to WFC, which prints them all out and determines whether
or not a plot should also be made.

Subgoutine WFO computes values of kg(x'), Ag(x'), ng(x')lz, and
]%g(x‘)] and returns these values to WFC.

2
Subroutine WFXIW computes values of %X(x’) and !%g(x')l for n> 0
and returns these values to WEFC.

Subroutine WFXIH computes values of ]%ﬁ(x')] and [%E(x')]z for n>0
(including n = N) and returns these values to WFC.

Subroutine PLOTFX sets up PLOTMY.

Subroutine PLOTMY furnishes a plot of A(x') and [K(x')]z against x'.
(This subroutine is part of the library tape of the Lewls Monitor System. )
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Details of Individual Routines

In the following descriptions only those parts of MATIN and VOPFIX pertain-
ing to computations of the wave functions are included.

In MAIN the parameters N, w, h, a, and V5 as well as the choice of how
VM(X') is to be made are fed in as described in appendix D. EVSKIP must be set
equal to 1 so that eigenvalues will not be computed. In addition, JEV must be
fixed, which gives the total number of eigenvalue data cards to be used in the
run.

Next, the number of subintervals in each region of constant potential is
fixed. Provision is made for computing wave functions only in certain regions
if desired. Then a decision i1s made as to whether a plot is to be obtained in
addition to the printed values for A(x'). If a plot is asked for, various
parameters needed by PLOTMY are then read in. Control is then transferred to
the same DO-loop that sets VO as described in appendix D at the end of which
the program is terminated.

Subroutine VOPFIX will determine the value of Vy(x') to be used in subse-
guent subroutines as described in appendix D. However, if EVSKIP was set equal
to 1 in MATIN, then instead of calling EVFIND, control will be transferred to an
interval DO-loop that will read eigenvalues stored in MAIN one at a time and
call NORMAL. When this procedure has been followed JEV times (see MAIN), the
value of Vy(x') in the external DO-loop is stepped up and the inner DO-loop
cycle repeated. When the outer DO-loop is completed, control is returned to
MATN.

It should be noted that a dummy subroutine EVFIND must be included in the
deck when computing wave functions or the program will not run.

Subroutine NORMAIL computes Ag/Bg, BX/BW, Ag/Bg, and BR/BY (see egs.
(C13) to (C18)) from the matching equations (A4), (A5), (A7), (A8), (A9),
(A10), and (All). As explained in the text, if DN 1is small enough for the
eigenvalue being used, the results will be the same as if equation (A12) had
been used instead of equation (All). The routine is set up in such a manner
that individual quantities needed for the normalization as given by equations
(ce1), (cz22), (c23), (C24), and (C9) are computed and stored along with each
ratio. After all of the ratios have been computed and stored and the normaliz-
ation of the arbitrary coefficient has been completed, WFC is called.

Subroutine WFC normalizes and stores the unnormalized coefficients com-
puted in NORMAL. Then Ag, Bg, and GR are computed and WFO is called. Next,

a DO-loop is entered in which the following procedure is carried out:

First, a test 1s made to determine whether Ax') was desired for the re-
gion being considered. If the data in MAIN indicated that no A(x') was asked
for the region in question, then the same test is made for the next region one
atomic distance farther along the positive. half of the chain. If the test in-
dicates that A(x') was asked for in the region, then AX, BX, and Bg are
set up and WFXIW is called to compute A(x') in the well portion of the region.
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When WFXIW returns control to WFC, A%, B%, and Gﬁ are set up and WFXIH is

called to compute ANx') in the hill protion of the region. Following this,
the test is applied to the next region.

After all of the regions in the chain have been tested and values of
A(x') computed for all of the region for which these values are requested, the

values are printed out.

Then if a plot is desired (KPLOT = 1), PLOTFX is called. If no plot is
desired, control is returned to NORMAL.

The special subroutine WFO was written to compute Nj(x') and %%(x’) be-
cause the beginning and end of the cycle have somewhat special behavior.
These quantities and their absolute squares are computed by using equa-
tions (24) and (25). Control is then returned to WFC.

Subroutine WFXIW computes the quantities %g(x‘) and [%X(x’),z (for
0 < n < N) using equation (38). Control is returned to WFC.

Subroutine WFXIH computes the quantities %ﬁ(x‘) and ]%ﬁ(x')[z for

0 <n<0N by using equation (39). When a test indicates that n = N, then
XE(X’) and ’%ﬁ(x')l are computed by using equation (40). After each set of
computations control is returned to WFC.

Subroutine PLOTFX(EV) arranges the values of x', A (x'), and Ikn(x’)]z

in arrays so that they can be plotted properly by PLOIMY. A1l of the input
control data for this subroutine is read in by MAIN. The eigenvalue is an
argument of this subroutine and is read in by VOPFIX. Actually, the eigenvalue

ig only required for the legend of the plot.

Subroutine PLOTMY is part of the library tape of the Lewis monitoring sys-
tem. It is the routine that actually plots A(x') and |7\(x')|2 against x'.
The main feature of this routine that must be taken into account is that it
places the ordinate across the top of the page with zero to the left and the
abscigsa down the page with the lowest value at the top. While this feature is
somewhat inconvenient in many cases, it has the advantage of permitting the
case of an abscigsa of arbitrary length since several pages can be covered con-
tinuously. Its use is fully described in reference 16.

Input Data

Units for the input data are the following: energy, electron volts;
length, angstroms.

The data are input from tape 5. The names of the quantities for which the
data are used along with a description of the quantity are now listed. The
subroutines in which these quantities are used follow each description.

N  number of atoms in positive half of chain (MAIN, VOPFIX, NORMAL, WFC,
WFXIH, PLOTFX) '

60



KI

KS

VPSLCT

VECHS

KTP

KFP

KSP

IVSKIP

EVODD

NI

NS

KPLOT

XDSIZE

L™

LTN

width of well portion in one period of Vp(x') (MAIN, NORMAL, WFO,
WFXIW)

width of hill portion in one period of Vp(x') (MAIN, NORMAL, WFO,
WFXIH)

distance of atomic separation (MAIN, VOPFIX, NORMAL, WFXIW, WFXIH)
see appendix D
see appendix D
see appendix D

see appendix D

w)

see appendix

see appendix

g o

see appendix

w)

see appendix
see appendix D
see appendix D

beginning multiple of fraction of subdivision of individual region
used for computing wave functions

l/NF, fraction of subdivision of individual region; NF, final multiple
of this subdivision

stepping interval of multiple of subdivision

dimensional quantity by means of which the decision to compute A(x')
for a region is made; each region in sequence is characterized by
the location of the number on the data card - the first number on

the card corresponds to the Oth region; 1f the jth column on the
data card is blank, no computation of A.(x') will be made; if the

jth column contains a 1, the computation is made (MAIN, WFC)
1, plot of A(x') will be made; 2, no plot of A(x') will be made
number of points on one curve in plot
number of 1line spaces between grid lines on plot
number of print spaces between grid lines on plot

number of curves on plot

6l




KSX scaling parameter for x-scale (runs up and down the page); FX and DX will
be multiplied by 10KSX-6

FX quanti’ -~ used to specify starting value on vertical scale; actual start-
ing value, FX times 10KSX-6

DX quantity used to specify change in value in vertical scale one line
space; actual change, DX times 10K5X-6

KSY scaling parameter for y-scale (runs across page); FY and DY will be mul-
tiplied by 10KSY-6

FY quantity used to specify starting value on horizontal scale; actual
starting value, FY times 10KSY-6

DY quantity used to specify change in horizontal scale in one print space;
actual change, DY times eK5Y-6

A listing of the subroutines used in computing the wave function follows
(MAIN and VOPFIX are listed in appendix D).

62



SUBROUTINE NURMAL{EV)

C FULL DOUBLE PRECSN. OUNLY STORES FOR 50 ATOMS NOW.
DIMENSION AKW(50),BKW(50),AKH{50) ,8BKH(50),
1GKW(50) yGKH(50) y JW(50), JH{50) 4RMLZ(105)
DUUBLE PRECISION WyHy VOyVOPyBOWsGIWyGJHy AKWyBKIWy AKH, BKH, GKWy GKH
DOUBLE PRECISION DABSsDSQRTLEVIEXyB3GIH)ABGIHyBGIW)ABGIW,y XIyRML
DOUBLE PRECISION  SNF » DSIN y TWGIW o EXPP ¢+ DEXP

DOUBLE PRECISION FHGJUH o EXPN » SNHF y CNHF s CNF

v0uUBLE PRECISION DOLOS v WGIW v EXPPJH o THGJIH 5 EXPNJH
v0UBLE PRECISION SNHFJH o CNHFJH , EXPPIW o+ FWGIW y EXPNIw
VDUUBLE PRECISION SNHFIW 4 CNHFIW 4 SNFJH 4 CNFJH » SNFIW

J0UBLE PRECISION CNFIWsRMLZ,ETA

DOUBLE PRECISION AANMOH,BBNMOH, ABNMOHyAANMIW,BBNMIW, ABNMIW

VOUBLE PRECISION AANMJH, BBNMJH, ABNMJH

INTEGER EVODD

COMMON  LOM

EQUIVALENCE (AyCOM(1))y(W,COM(3))4(HyCOM(5)),(VD,COM(T)),
1{VUP,CUM(325)), (80W,COM(9503) )}, (AKW,COM{9505)),(BKW,COM(3605)),
2(AKH, CUMI9705) )y [BKH,COM(9805) ), (GKWyCUM(9905) )}, (GKHyCOM{10005) ),
3(N,CUMI16)),(JH,COM(10105)),(JW,COM(10205)),(EVODU,COM(3291})
1 eX = EV

£ETa = 0.512335100

AKW(l) = 0.000

BKW{1l) = 0.000

GIW = ETA®DSJRTIEX)

GKall) = GIw

WoIW = WeGIW

TWGIW = 2.D0#WGIW

BGJH = EX-VO

ABGJIH = DABSIBGJIH)

G = cTA=DSURTIABGJH)

GKA(l) = GJH

THGJIH = 2,D0*H*GJH
FHGJUH = 4,00#H=2GJH
Jall) = 3

CCUOMPUTE COEFFICIENT OF 80W OR AQW IN RMLZ
SNF = DSIN(TWGIW)
C TERM IN NORMALIZATION INVOLVING BOW OR AOQOW
GO TO (101,102)EVOULD
101 RMLZ({1) = W#{(1.DO+SNF/TWGIW)/2.D0
C COMPUTE BOH/BOW
BKH{1) = DCOS{WGIW)
GO To 103
102 RMLZ {1) = W#(leDO ~SNF/TWGIW)/{2.D0%GIwx#2)
C COMPUTE BOH/AOW
BKH{1) = DSIN{WGIW)/GIW
C COMPUTE CULFFS OF AOHw#»2,BOH®%2,AND AQH*BOH IN RMLZ
103 IF (8GJH) 24,3,4
2 JH(1) =1

EXPP = DEXP{FHGJH)
EXPN = DEXP(-FHGJH)
SNHF = (EXPP-EXPN)/2.D0

Codk = (EXPP+EXPN}/2.D0

C (L/H)» COEFF OF (AOH)%%2 IN RMLZ
AANMOH = SNHF/FHGJH-1.D0

C (1/H)» COEFF OF oOH##2 IN RMLZ
BBNMOH = SNHF/FHGJH+1.00

C (1/2H)» COEFF UF AOH#80H IN RMLZ
ABNMOH = (CNHF-1.00)/FHGJH
U TO 5
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3 Jr(l) = 2

AANMOH = 2.00#(2,D0*H)*%2/3.D0
BUNMOH = 2.00

ABNMOH = 2.00%H

G0 10 5

4 JH{1) = 3
SNF = USIN{(FHGJA)
CNF = DCOS(FHGJH)
AANMOH = 1.DU-SNF/FHGJH
BBNMOH 1.D0+SNF/FHGUH
ABNMOH = {1.D0-CNF)/FHGJH
5 GO TU (106,107),EVOLD
C COMPUTe AOH/BOW
106 SNF = USIN(WGIW)
AKH(L) = —GIwW*SNF
GU TO 108
C COMPUTE AQH/AOW
107 AKH{Ll) = DCOS(WGIW)
108 JHK = JHI(1)
GO TO (643746} 4JHK
6 AKHM{1l) = AKH{1)/GJH
C TERM IN RMLZ DUE TO ZERUTH HILL
7 RMLZ{2) = H*(AANMOH*AKH(1) *%2+BBNMOH#BKH( 1) *#*2
1+2.,DO*»ABNMOH*AKH( 1} #*BKH(1}))
DU 40 I=1,N
X1 =1
11 = I+1
B6Id = EX-XI#*%2%v0P
ABGIA = DABS(8BGIwW)
GIA = ETA*DSQRT(ABGIA)
GKW(Il) =GIwW
TWGIAd = 2.D00#wW*GINW
FWGIW = 4.00*WeGIW
GU TO(By9,10),4JHK
C COMPUTE BIw/bOW

ot

8 EXPPJH = DEXP{(THGJIH]}
EXPNJH = DEXP(-THGJIA)
ANHFJH = (EXPPJH-EXPNJH)/2.00
CNHFJH = (EXPPJH+EXPNJIH)/2.0D0

BKW(IL) = AKH(I)*SNHFJH+BKH(I)*CNHFJH
AKAW(TIL) = GKH(I)*{AKH[1)*CNHFJH+BKH{I)%SNHFJH)
GO 0 11

9 BKW{I1) = 2.00«H=AKH{T)+BKH{T)
AKA (IL) = AKH(I)
L0 TO 11

10 SNFJH = DSINITHGJH)
CNFJH = DCOS{THGJH)
BRA(IL) = AKA(L) #SNFJH+BKH{T)}=CNFJH
AKW{IL) = GKHIT)}#{AKH(T) #*CNFJIA-BKH(I)*#SNFJH)

11 IF (BGIW) 12,413,14

12 Jwlil) =1

C COMPUTE LUEFFS OF Alw*+2,BIlws*2,AIW*BIw IN RMLZ

EXPPIW = DEXPIFAGIW)

EXPNIA = DEXP(-FWGIwW)
SNHFIW = (EXPPIW-EXPNIW)/2.D0
CNAFIW = (EXPPIAW+EXPNIW)/2.00

C {1/a4)*COEFF OF AlwW=x2
AANMIA = SNHFIW/FWGlW-1.D0
C (1/W)*CUEFF UF BlWe=2
BBNB3Iw = SNHFIN/FWGIW+1.00
C (1/24)=COEFF OF AlW=31wW
ABNMIW = (UNHFIW-1.D0)})/FWGIW
GO TO 15



=

13 Jw(ll) = 2
AAIMIW = 2.00%(2.00%W)*%2/3.D0
BsbNMIW = 2.00
ASNMIW = 2,D0%W
6o 10 15
L4 Jw(ll) = 3
SNFIW DSIN(FWGIW)

CNFIW = DCOS(FWGIW)
AANMIW = 1.00-SNFIW/FWGIW
SONMIW = 1oUO+SNFIW/FWGIW
ABNMIW = (1LoUO=CNFIA)/FAGIW
15 JWK = Jw(Il)
COMPUTE Alw/B0W
GO TO (20+21+20)yJWK
20 AKW(ILl) = AKW{IL)/GIW
TERM [N RMLZ DUE TO ITH WELL
21 12 = 2x%1+1
RMLZ(E2) = Wa(AANMIW#AKW(I1) #x2+BBNMIW#BKW{ 1) *%2
L+2.00#ABNMIW#AKW( 11} #BKW({IL))
COMPUTE WQUANTITIES FOR ITH HILL
22 BGJH = BGlw-vO
ABGJH = DABS(BGJH)
GJA = ETA*DSQURT(ABGJIH)
GKH({ILl) = GJH
THGJH = 2,00%H*GJH
FHUJH = 4.D0=H=GJH
COMPUTE CUEFF UF AJH*%*2,BJH#%2, AND AJH#BJH IN RMLZ
IF (BGJH) 23,24,25
23 JH{Il) =1
EXPPJr AND EXPNJH NOT SAME AS THOSE USED BETWEEN 8 AND 9
EXPPJH = DEXP{FHGJH)

EXPNJH = DEXP(-FHGJH)
SNHFJH = (EXPPJH-EXPNJH)/2.D0
CNHFJH = (EXPPJH+EXPNJH)/2.00

(1/H}»COEFF OF AJH *»2
2B AANMJH = SNHFJH/FHGJH-1.D0
(L/H)2COEFF UF BJH *#2

B3NMJH = SNHFJH/FHGJH+1.DO0
ABNMJH = (CNHFJH-1.D0)}/FHGJH
GU TO 33

24 JH{Il) =2

30 AANMIH = 2.00#(2.D0#H)*%2/3,00
BUNMIH = 2,00
ABNMJH = 2.D0#H
cu 10 33

25 JH({I1l) =3
SNFJH = DSIN(FHGJH)
CNFJH = DCUS(FRGJH)

32 AANMJH 1.DO=SNFJUH/FHGJUH

BBAMJIH = L U0+SNFJUH/FHGJH

ABNMJIH = .(1.u0=-CNFJH)} /FHGIH
33 JHK = JH(I1)

0O TO (27929931),JuK
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C EXPPIW AND EXPNIW DIFFERENT FROM THOSE BETWEEN 12 AND 13

27 EXPPIW = DEXP(TWGIW)
EXPNIW = DEXP(~TWGIW)
SNHFIW = (EXPPIW-EXPNIW)/2.00
CNHFIW = (EXPPIW+EXPNIAN)/2.00

IF {I-N.GE.O) GO TO 41
C COMPUTE BJH/BOW
BKH{IL) = AKW{ILl)#SNHFIW + BKW(I1l)=CNHFIW
C COMPUTE AJH/BOW
AKH{IL) = GIW*(AKW(I1)*CNHFIW+BKW(IL)#SNHFIW)
GO TO &6
BKH{IL) = 2.00%WsAKW(I1)+BKW{I1)
29 IfF (I-N.GE.O) GO TO 41
AKH{ILl) = AKwW{I1l)
GO0 To 26
31 SNFIW = DSIN(TWGIW)
CNFIW = DCOSCTWGIW)
IF (I-N.GE.O) GO TO 41
BKH{IL) = AKW{IL)*SNFIW+BKW{ILl)*CNFIW
AKH{IL) = GIW®#(AKW{IL)#CNFIW-BKW(I1)*SNFIW}
26 G0 TO (38,939,38)yJHK
38 AKH{I1l) = AKH(I1l)/GJH
C TERM I[N RMLZ DUE TO ITH HILL
39 I3 = [2+1
RMLZUT3) = H#(AANMJH®AKH{I1)*#2+BBNMJH*BKH{ [1)#=2
1+2.D0*ABNMJIH*AKH{ I1) #BKH({11))
40 CONTINUE
C COMPUTE QUANTITES FOR LAST HILL
41 N1 = N+l
BKHIN1) = 0.00
GO TO (42¢43+44)¢JINWK
42 AKHINL1) = AKW{Nl)®#SNHFIW+BKWINL)#CNHFIW
GO TO 45
43 AKHINL) = 2.00%W*AKWINL) +BKW{NL)
G0 TO 45
44 AKHINL) = AKW{NL)#SNFIW+BKW{(NL)*(NF1W
45 IF (BGJH) 46,47,48
46 EXPPJUH = DEXP{THGJIH)
EXPNJH = DEXP(=THGJH)
SNAFJH = (EXPPJH-EXPNJH)/2.D0
AKHINL) = -AKH{NL1)/5NHFJH
C (1/H)*COEFF OF AKH(N+1)=#%2 IN RMLZ

EXPPJH = DEXP{FHGJH)
EXPNJH = ODEXP(-FHGJIH)
SNHFJH = (EXPPJH-EXPNJH)/2.00
AANMJIH = SNHFJH/FHGJH~1.D0
GO0 TO 49

47 AKHINL1) = -AKH{N1)/(2.00%H)
AANMJH = 2.D0#(2,D0#H)»%2/3.D0
60 TO 49

48 SNFJH = DSIN{THGJH)
AKHINL) = —AKH({N1)/S5SNFJH

SNFJH = DSIN(FHGJH)
AANMJH = 1.D0-SNFJH/FHGJH
C LAST ENTRY IN RMLZ

49 N2 =2#N1
RMLZENZ) = H®=AANMJIH*AKH(NL) *=%2
RML = 0.D0
00 50 J=1,N2

50 RML = RML + RMLZI(J)

51 80W = USQRT(1.D0/(2.D0%RML})
CALL WFC{(EV)
RETURN
END
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SUBROUTINE WFCLEV)

DOUBLE PRECISICN AKWyBKWsAKHsBKHyGKW,GKH,EV,VO, VOP

DIMENSION JDO(100) +AKW{50) yBKW{50),AKH(50),BKH(50),

LGKW(50) ,GKF{50),XP(220)4WF{220),WFSQ(220)

INVTEGER EVCOD

COMMON  CO¥

EQUIVALENCE {A,COM(1))}s{WsCOM(3))s(HsCOM(5))5(VD,COMIT)),
1{N,COM(16)),(VCP,C0OM(325)),(ROOT,COM({9) )+ {XSTART,ESTART,COM(11)),
T(NI,COM(17))s(NF,COM(18B)),(NS,COM{19)),(4D0.,COMI(225)),
21KPLOT ,COMIST4) ) » LIK1,COMIS5TS5)) s (XP,COMI5T76)), [WF,COM1836)),
3(WFSQ,COM{1116)),{BOW,COM(9503)), (AKW,COM(9505)), (BKW,COM(96051})),
4(AKH,CCM(9705)), (BKH,CCM{9805)), {GKW,COM{9905)) y (GKH,LOM{ 100051},
5(EVODD,CCM(329))

GO 1O (1,1C1},EVODD

BKW(l) = BCw

GO 7O 102

AKk(1) = BCw

N1 = N+l

00 2 J=14N

Jl= J+1

AKn(JLl) = BOWsAKW{J1)

BKw(J1l) = BOW*BKW{J1)

AKH{J) = BOW*AKH(J)

BKH{J) = BOws BKH{J)

AKH(NLl) = BOW=AKHINL1)

BKH{N1}) = 0.0DO

CCEFFS NOW NORMALIZED AND STORED

IK1 = 0

IF (JDC(1)) 444,3

IK1=1IK1l +1

ANH = AKHKI(1)

BNH = BKHI(1)

GOW = GKW(1)

GOH = GKHI(1)

CALL WFO{ANH,BNH,GOW,GOH)
J0 = NF/NS

DO 10 I=2,N1
IF (JDC(I)) 10451045

IF (I-N1) 746,46
CALL SLITE {2)
IKL = IKL +1
ANW = AKWI(I)
BNW = BKW(I)
GIw = GKWlI)

CALL WFXIW{ANW,BNW,GiwW,1)
IF (I-N1) 8,11,11

ANH AKH{T)

BNH BKH{I)

GJH GKH{ )

CALL WFXIHUANH,BNH,GJH,I)
CCATINLE

CALL SLITET(2,KO000FX)

GG TO(12,13),K000FX

ANH = AKHINL)
BNH = 0.0
GJH = GKH(AN1)

CALL SLITE (2)

CALL WFXIH(ANH,BNH,GJH,I)

WRITE (6,61) VC,VOP,EV,BOW,EVODD

FORMAT (1HK,10X,3HVO=F5.1,5Xy4HVOP=F15.9,5X,3HEV=1PD23.1595X,
14HBOW=1PEL5.7,5X6HEVOCD=12///
2214Xs3HXPH y6X s 4HWF IN 94 Xy SHWFINSQe 4 Xy 3HXPH» TXy 4HWF IHy 4Xy 6HWFIHSQ))

NPLOT = N/2 +1

00 14 IA= 1.NPLOT

K= 40#(I1A~1) +1

L=K+9

WRITE (6,63)

FORMAT (1HK)

WRITE (6462)1(XP(JI)4yWFLJ)yWFSQIJ)»XP(JI+10),WF(J+10), WFSQ{J+10),
IXP{J+20) yWF(J+20) s WFSQUJ+20) s XPLJI+30) 4y WF{J+30), WFSQUJ+30)}
24J=K4l)

FORMAT (4{CPF8.3,1PE10.241PE10.2))

CONTINUE

GO TO (15,16),KPLOT

CALL PLOTFX({EV])

RETURN

END
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SUBROUTINE WFO(AHN,BHN,GOW,GOH)

DIMENSION XR€220)4WF(220), WFSQ{220),JH(100)
INTEGER EVBED

CDOMMON COM

EQUIVALENGE ¢WyCOM{3) )y (H,COM(5) )5 (NI, COM{17)),(NF,COM(18)),
LENS,COME19) ) wf XP,COM(5T6)) 5 (WF,COM{BI6) ), (WFSQ,COM(1116)),
2(BOW,COM{9563) 3, (dHsCOM{10105) ), (EVODD,COML329))
JHK= JH{1)

XNF = NF

DO 10 K=NIy4NF,NS

XK = K

AN = XKoW/XNF

GXN = GOWp KN

XRLK) o XN

GO TO (11,14 ke EVODD

WEIK) ® BOMe GOS{GXW)

GO TO 13

WFIK) = BOW#SIN(GXW}/GOW

WEBQ(K) = WE(K) ##2

XH = 2.02H8$XKJXNF

GXH = GOHeXH

Jx K+10

XeL(Jd) = XH + M

GO TO (293¢4)9JHK

WE(J) = AHNy SENH{GXH) + BHN# COSH(GXH)

GO 70 S

Whi{J) = AHNs KH + BHN

60 TO 5

HWELJ) = AHN# SINCGXH) + BHN* COS(GXH)
WESQIJ) = WElJIwn2

CONT INVE

RETURN

END

SUBROUTINE WFXIW(ANW,;BNW,GIW, 1)

DIMENSION XP(220)+WF(1220),WFSQ{220)},JW{100)

COMMON COM

EQUIVALENCE (A,COM(L))4{W,COM(3)),(N,COM(16)]},
LINI,COM(17)),(NF,CUM(18}),{NS,COM(19)),
2(XPyCOM{576) )+ (WF,COM(BI6) ), (WFSQ,CUM(1116)),(JW,COM(10205))
I=1

JuK = Jwll)

Xl = I-1

XNF = NF

DO 10 K= NIsNF,NS
XK = K

XW = 2.0#WeXK/XNF

XPWH = XI#A—W + XW

GXPW = GIlwwXu

KP = 20=({]I-1) + K

XP{KP} = XPW

GO TO (253,4)4JWK

WFE(KP) = ANW#SINHIGXPW) + BNW# COSH(GXPW)
GO T0 5

WF(KP) = ANW#XW + BNwW

GU TO 5

WF{KP) = ANW*SIN(GXPW) + BNW# COS{GXPW)
WESQIKP) = WF(KP) ==%2

CONTINUE

RETURN

END
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SUBROUTINE WFXIH(ANH,BNH,GJH, 1)

DIMENSICON XP(220)WF(220)WFSQ(220),JH(100]}

CCMMON  CO¥

COFMCN COCOCM (10210)

EQUIVALENCE (A COM(1)),(W,COM{3))y{H)COM(5))s{N,COM(16)}),
LINI,COMILT) ), {NF,COM{18)),(NS,COM(19}),
2(XP,CONIS5T6)) s (WF,COM(896) )+ {WFSQy,COM{1116)), (JH.COM(10105))

I=1

JHK = JHLI)
XN = N

XI = I-1
XNF = NF

CALL SLITET{(2,K000FX)
GC TO(11,6),K000FX
DO 10 K= NI,NF,NS

XK = K

XH = 2.0#H#XK/XNF

XPH = XI#A +W +XH
GXPH = GJH#XH

KP = 20#{I-1) + K +10
XP{KP) = XPH

GO TO (2+344)4JHK

WF{KP) = ANHsSINH{GXPH) + BNH= COSH{GXPH)
GQ 10 5

WF{KP) = ANH#XH + BNH

GO Y0 5

WF{KP) = ANH#SIN{(GXPH) + BNH& COS{GXPH)
WFSQ(KP) = WF(KP) #x2

CONTINLE

GC YO 15

DO 12 K = NI,NF,NS

XK = K

XH = 2.0%H=XK/XNF

XPH= XN#A ¢ W +XH

GXPH = GJH#(XPH —A#(XN + 1.0) + W)
KP = 20%(I-1) + K +10
XP{KP) = XPH

GO TO (74849),JHK
WF{KP) = ANHeSINHIGXPH)
GO 10 13

WF{KP) = ANH=XH

GO TC 13

WF(KP) = ANH® SIN(GXPH)
WFSQIKF) = WF{KP) #a2
CONTINUE

RETURN

END
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SUHBROUTINE PLOTFX(EV)
C PLOTS XP VERTICALLY
DIMENSION XP{220),WF{220)4WFSQ(220)
DIMENSION XDOWN(215), YACROS{430),KKK{14),P(11)
COMMON COM
EQUIVALENCE (N,COM{16))},(Vv0,COM({)),{VOP,COM(325)),
LIXP,COM{576)) s (WF4CUM(B96) ), (WFSQ,COM(L1L6)),{EVODD,COM(329)),
2(XDSIZE,COM(B0T7) ) (LTM,COM{8BL4) ) {LTN,LOM(8L5) )y (KN,COMIB16)]},
3(KSXyCUM(817)),(KSY,COM(818))+(FX,COM(819)),(DX,COM(B20)),
4{FY,COM(821))4,(DY,CUM(B22))
INTEGER XDSIZE,EVODD
1 DO 10 I0 = 1,5
J = 2+10
XDOWN {10) = XP(J)
YACROS{IO) = WF(J)
ISQ = XDSIZE + 10
10 YACROS(1SQ) = WFSQ(J)
C WF AND WFSQ FOR ZEROTH WELL NOW STORED IN YACROS
2 NPL = 20#[N+1)
0 20 11 = 1l1,NPL
Jl1 = 11 -5
XDOWN{JL) =XP(I1)
YACROS(J1) = WF(IL)
JSQ = XDSIZE + J1
20 YACROS (JSQ) = WFSQ(Il)
C ALL WF AND WFSQ NOW STORED IN YACROS
C KN IS THE NUMBER OF CURVES
KKK(1) = 54
KKK(2) = KN
C NO OF POINTS IS = TO THE VALUE OF XDSIZE
KKK{3) = XDSIZE

P(1l) = 1.0
C LTM SPECIFIES NUMBER LINE SPACES BETWEEN GRID LINES
P(3)= LTM

C LTN SPECIFIES NUMBER OF PRINT SPACES BETWEEN GRID LINES
‘Pl4) = LTN

P{6) = KSX

C FX USED TO SPECIFY STARTING VALUE OF VERTICAL SCALE
P{7) = FX

C DX USED TO SPECIFY CHANGE IN VERTCAL GRID VALUES EACH LINE SPACE
PL(8) =DX
P(9) = KSY

C FY USED TO SPECIFY STARTING VALUE OF HORIZONTAL SCALE
P{10) = FY

C DY USED TO SPECIFY CHANGE IN HORIZONTAL GRID VALUES EACH PRINT SPACE
P(11) = DY

C TITLE

WRITE (6,61) NyEVODD

61 FURMAT(2HPT,40X,36HWAVE FUNCTION (=) AND WFSQ{+) FOR N= 13,5X,
16HEVODL=12)

3 CALL PLOTMY{XDOWN,YACROS KKK,P)

C LEGEND

WRITE (6,62) VO,VOP,EV

62 FORMAT (2HPL430Xy3HVO=F5.195Xy4HVOP=EPEL15.8,5Xy3HEV=1PD23.16,
13HDN=)
RETURN
END
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